988 resultados para plant organization level
Resumo:
This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2003 just prior to mowing (during peak standing biomass in late May and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2005 just prior to mowing (during peak standing biomass in late May and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in three (in May 2005) and four (August 2005) rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
This data set comprises a time series of aboveground community plant biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice a year just prior to mowing (during peak standing biomass twice a year, generally in May and August; in 2002 only once in September) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in up to four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned by random selection of new coordinates every year within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
1. Identifying plant communities that are resistant to climate change will be critical for developing accurate, wide-scale vegetation change predictions. Most northern plant communities, especially tundra, have shown strong responses to experimental and observed warming. 2. Experimental warming is a key tool for understanding vegetation responses to climate change. We used open-top chambers to passively warm an evergreen-shrub heath by 1.0-1.3 °C for 15 years at Alexandra Fiord, Nunavut, Canada (79 °N). In 1996, 2000 and 2007, we measured height, plant composition and abundance with a point-intercept method. 3. Experimental warming did not strongly affect vascular plant cover, canopy height or species diversity, but it did increase bryophyte cover by 6.3% and decrease lichen cover by 3.5%. Temporal changes in plant cover were more frequent and of greater magnitude than changes due to experimental warming. 4. Synthesis. This evergreen-shrub heath continues to exhibit community-level resistance to long-term experimental warming, in contrast to most Arctic plant communities. Our findings support the view that only substantial climatic changes will alter unproductive ecosystems.
Resumo:
This data set comprises a time series of aboveground community plant biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the dominance experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the dominance experiment, 206 grassland plots of 3.5 x 3.5 m were established from a pool of 9 species that can be dominant in semi-natural grassland communities of the study region. In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 3, 4, 6, and 9 species). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice a year, generally in May and August (in 2002 only once in September) on all experimental plots of the dominance experiment. This was done by clipping the vegetation at 3 cm above ground in two rectangles of 0.2 x 0.5 m per experimental plot. The location of these rectangles was assigned by random selection of new coordinates every year within the central area of the plots (excluding an outer edge of 50cm). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material, and remaining plant material that could not be assigned to any category. Biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The mean of both samples per plot and the individual measurements are provided in the data file. Overall, analyses of the community biomass data have identified species richness and the presence of particular species as an important driver of a positive biodiversity-productivity relationship.
Resumo:
This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2008 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in three rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
Fifty samples of Roman time soil preserved under the thick ash layer of the A.D.79 eruption of Mt Vesuvius were studied by pollen analysis: 33 samples from a former vineyard surrounding a Villa Rustica at Boscoreale (excavation site 40 x 50 m), 13 samples taken along the 60 m long swimming pool in the sculpture garden of the Villa of Poppaea at Oplontis, and four samples from the formal garden (12.4 x 17.5 m) of the House of the Gold Bracelet in Pompeii. To avoid contamination with modern pollen all samples were taken immediately after uncovering a new portion of the A.D. 79 soil. For comparison also samples of modern Italian soils were studied. Using standard methods for pollen preparation the pollen content of 15 of the archaeological samples proved to be too little to reach a pollen sum of more than 100 grains. The pollen spectra of these samples are not shown in the pollen tables. (Flotation with a sodium tungstate solution, Na2WO4, D = 2.05, following treatment with HCl and NaOH would probably have given a somewhat better result. This method was, however, not available as too expensive at that time.) Although the archaeological samples were taken a few meters apart their pollen values differ very much from one sample to the other. E.g., at Boscoreale (SW quarter). the pollen values of Pinus range from 1.5 to 54.5% resp. from 1 to 244 pine pollen grains per 1 gram of soil, the extremes even found under pine trees. Vitis pollen was present in 7 of the 11 vineyard samples from Boscoreale (NE quarter) only. Although a maximum of 21.7% is reached, the values of Vitis are mostly below 1.5%. Even the values of common weeds differ very much, not only at Boscoreale, but also at the other two sites. The pollen concentration values show similar variations: 3 to 3053 grains and spores were found in 1 g of soil. The mean value (290) is much less than the number of pollen grains, which would fall on 1 cm2 of soil surface during one year. In contrast, the pollen and spore concentrations of the recent soil samples, treated in exactly the same manner, range from 9313 to almost 80000 grains per 1 g of soil. Evidently most of the Roman time pollen has disappeared since its deposition, the reasons not being clear. Not even species which are known to have been cultivated in the garden of Oplontis, like Citrus and Nerium, plant species with easily distinguishable pollen grains, could be traced by pollen analysis. The loss of most of the pollen grains originally contained in the soil prohibits any detailed interpretation of the Pompeian pollen data. The pollen counts merely name plant species which grew in the region, but not necessarily on the excavated plots.
Resumo:
This paper examines how the decline of communication costs between management and production facilities within firms and the decrease in trade costs of manufactured goods affect the spatial organization of a two-region economy with multi-unit/multi-plant firms. The development of information technology decreases the costs of communication and trade costs. Thus, the fragmentation of firms is promoted. Our result indicates that, with decreasing communication costs, firms producing low trade-cost products (such as consumer electronics) tend to concentrate their manufacturing plants in low wage countries. In contrast, firms producing high trade-cost products (such as automobiles) tend to have multiple plants serving to segmented markets, even in the absence of wage differentials.
Resumo:
Following a Royal Edict to adopt universal suffrage in election for local government institutions, maiden elections were held in 199 gewogs (counties) in Bhutan in 2002 to elect their chief executives. This paper gives an account of this first time event in a country where most villagers had never seen secret ballots and poll booths. It synthesizes detailed data, mostly qualitative, collected soon after the election was over, and assesses aspects of electoral participation that His Majesty the King of Bhutan has introduced steadily to deepen democracy. Beginning with a glance at the territorial organization of the Bhutanese state within which the counties are embedded, the paper compares the electoral results with the relevant election rules.
Resumo:
Recent empirical studies which utilize plant- or establishment-level data to examine globalization's impact on productivity have discovered many causal mechanisms involved in globalization's impact on firms' productivity. Since these pathways have been broad, there have been few attempts to summarize the several and detailed mechanisms of self-selection and learning at the same time. This paper examines seven pathways so that the clear-cut consequences of the broad picture of globalization become visible. This strategy is useful for detecting missing links within and across the existing studies as well as for finding possible synergy effects among different mechanisms. Insightful policy implications may be derived from the comprehensive comparisons between the seven different pathways of globalization.
Resumo:
Ozone (O3) phytototoxicity has been reported on a wide range of plantspecies, inducing the appearance of specific foliar injury or increasing leaf senescence. No information regarding the sensitivity of plantspecies from dehesa Mediterranean grasslands has been provided in spite of their great biological diversity. A screening study was carried out in open-top chambers (OTCs) to assess the O3-sensitivity of 22 representative therophytes of these ecosystems based on the appearance and extent of foliar injury. A distinction was made between specific O3injury and non-specific discolorations. Three O3 treatments (charcoal-filtered air, non-filtered air and non-filtered air supplemented with 40 nl l−1 O3 during 5 days per week) and three OTCs per treatment were used. The Papilionaceae species were more sensitive to O3 than the Poaceae species involved in the experiment since ambient levels induced foliar symptoms in 67% and 27%, respectively, of both plant families. An O3-sensitivity ranking of the species involved in the assessment is provided, which could be useful for bioindication programmes in Mediterranean areas. The assessed Trifoliumspecies were particularly sensitive since foliar symptoms were apparent in association with O3 accumulated exposures well below the current critical level for the prevention of this kind of effect. The exposure indices involving lower cut-off values (i.e. 30 nl l−1) were best related with the extent of O3-induced injury on these species.
Resumo:
The figure of protection "micro-reserves" was created in the Region of Valencia (ANONYMOUS, 1994) with the aim of protecting endangered plant species. This is one of the areas of greatest floristic richness and uniqueness of the western Mediterranean. In this area rare, endemic or threatened vascular flora has a peculiar distribution: they appear to form small fragments spread over the entire region (LAGUNA, 1994; LAGUNA, 2001) The protection of every these small populations of great scientific value has significant challenges. It doesn´t try to protect every species that set out in Annex IV of the by then existing Law 4 / 1989 (repealed in 2007), or to protect to the most ecological level with the creation of Natural Protected Area but an intermediate level: the plant community of small size. According to the decree: “as Micro-Reserve will be declared the natural parcels of land under 20 hectares that contain a high concentration of rare plants, endemic, threatened or of high scientific interest” (ANONYMOUS, 1994) . Of course, the statement of an area as micro-reserve carries certain prohibitions that are harmful to the vegetal community
Resumo:
A small heat-shock protein (sHSP) that shows molecular chaperone activity in vitro was recently purified from mature chestnut (Castanea sativa) cotyledons. This protein, renamed here as CsHSP17.5, belongs to cytosolic class I, as revealed by cDNA sequencing and immunoelectron microscopy. Recombinant CsHSP17.5 was overexpressed in Escherichia coli to study its possible function under stress conditions. Upon transfer from 37°C to 50°C, a temperature known to cause cell autolysis, those cells that accumulated CsHSP17.5 showed improved viability compared with control cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cell lysates suggested that such a protective effect in vivo is due to the ability of recombinant sHSP to maintain soluble cytosolic proteins in their native conformation, with little substrate specificity. To test the recent hypothesis that sHSPs may be involved in protection against cold stress, we also studied the viability of recombinant cells at 4°C. Unlike the major heat-induced chaperone, GroEL/ES, the chestnut sHSP significantly enhanced cell survivability at this temperature. CsHSP17.5 thus represents an example of a HSP capable of protecting cells against both thermal extremes. Consistent with these findings, high-level induction of homologous transcripts was observed in vegetative tissues of chestnut plantlets exposed to either type of thermal stress but not salt stress
Resumo:
The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species.
Resumo:
This paper analyzes the correlation between the fluctuations of the electrical power generated by the ensemble of 70 DC/AC inverters from a 45.6 MW PV plant. The use of real electrical power time series from a large collection of photovoltaic inverters of a same plant is an impor- tant contribution in the context of models built upon simplified assumptions to overcome the absence of such data. This data set is divided into three different fluctuation categories with a clustering proce- dure which performs correctly with the clearness index and the wavelet variances. Afterwards, the time dependent correlation between the electrical power time series of the inverters is esti- mated with the wavelet transform. The wavelet correlation depends on the distance between the inverters, the wavelet time scales and the daily fluctuation level. Correlation values for time scales below one minute are low without dependence on the daily fluctuation level. For time scales above 20 minutes, positive high correlation values are obtained, and the decay rate with the distance depends on the daily fluctuation level. At intermediate time scales the correlation depends strongly on the daily fluctuation level. The proposed methods have been implemented using free software. Source code is available as supplementary material.