958 resultados para persistent navigation and mapping
Resumo:
This paper reviews current research works at the authors’ Institutions to illustrate how mobile robotics and related technologies can be used to enhance economical fruition, control, protection and social impact of the cultural heritage. Robots allow experiencing on-line, from remote locations, tours at museums, archaeological areas and monuments. These solutions avoid travelling costs, increase beyond actual limits the number of simultaneous visitors, and prevent possible damages that can arise by over-exploitation of fragile environments. The same tools can be used for exploration and monitoring of cultural artifacts located in difficult to reach or dangerous areas. Examples are provided by the use of underwater robots in the exploration of deeply submerged archaeological areas. Besides, technologies commonly employed in robotics can be used to help exploring, monitoring and preserving cultural artifacts. Examples are provided by the development of procedures for data acquisition and mapping and by object recognition and monitoring algorithms.
Resumo:
A camera maps 3-dimensional (3D) world space to a 2-dimensional (2D) image space. In the process it loses the depth information, i.e., the distance from the camera focal point to the imaged objects. It is impossible to recover this information from a single image. However, by using two or more images from different viewing angles this information can be recovered, which in turn can be used to obtain the pose (position and orientation) of the camera. Using this pose, a 3D reconstruction of imaged objects in the world can be computed. Numerous algorithms have been proposed and implemented to solve the above problem; these algorithms are commonly called Structure from Motion (SfM). State-of-the-art SfM techniques have been shown to give promising results. However, unlike a Global Positioning System (GPS) or an Inertial Measurement Unit (IMU) which directly give the position and orientation respectively, the camera system estimates it after implementing SfM as mentioned above. This makes the pose obtained from a camera highly sensitive to the images captured and other effects, such as low lighting conditions, poor focus or improper viewing angles. In some applications, for example, an Unmanned Aerial Vehicle (UAV) inspecting a bridge or a robot mapping an environment using Simultaneous Localization and Mapping (SLAM), it is often difficult to capture images with ideal conditions. This report examines the use of SfM methods in such applications and the role of combining multiple sensors, viz., sensor fusion, to achieve more accurate and usable position and reconstruction information. This project investigates the role of sensor fusion in accurately estimating the pose of a camera for the application of 3D reconstruction of a scene. The first set of experiments is conducted in a motion capture room. These results are assumed as ground truth in order to evaluate the strengths and weaknesses of each sensor and to map their coordinate systems. Then a number of scenarios are targeted where SfM fails. The pose estimates obtained from SfM are replaced by those obtained from other sensors and the 3D reconstruction is completed. Quantitative and qualitative comparisons are made between the 3D reconstruction obtained by using only a camera versus that obtained by using the camera along with a LIDAR and/or an IMU. Additionally, the project also works towards the performance issue faced while handling large data sets of high-resolution images by implementing the system on the Superior high performance computing cluster at Michigan Technological University.
Resumo:
Examines the limitations of the dynamic theory of classification in accommodating the changes and rapid growth of new topics in the universe of knowledge. Change in an analytico-synthetic scheme for classification is much more a web of connections and mapping these changes is a complex process. Suggests that there is need for exploration of this complexity for both improving systems, and revisiting our theory.
Resumo:
Il y a présentement de la demande dans plusieurs milieux cherchant à utiliser des robots afin d'accomplir des tâches complexes, par exemple l'industrie de la construction désire des travailleurs pouvant travailler 24/7 ou encore effectuer des operation de sauvetage dans des zones compromises et dangereuses pour l'humain. Dans ces situations, il devient très important de pouvoir transporter des charges dans des environnements encombrés. Bien que ces dernières années il y a eu quelques études destinées à la navigation de robots dans ce type d'environnements, seulement quelques-unes d'entre elles ont abordé le problème de robots pouvant naviguer en déplaçant un objet volumineux ou lourd. Ceci est particulièrement utile pour transporter des charges ayant de poids et de formes variables, sans avoir à modifier physiquement le robot. Un robot humanoïde est une des plateformes disponibles afin d'effectuer efficacement ce type de transport. Celui-ci a, entre autres, l'avantage d'avoir des bras et ils peuvent donc les utiliser afin de manipuler précisément les objets à transporter. Dans ce mémoire de maîtrise, deux différentes techniques sont présentées. Dans la première partie, nous présentons un système inspiré par l'utilisation répandue de chariots de fortune par les humains. Celle-ci répond au problème d'un robot humanoïde naviguant dans un environnement encombré tout en déplaçant une charge lourde qui se trouve sur un chariot de fortune. Nous présentons un système de navigation complet, de la construction incrémentale d'une carte de l'environnement et du calcul des trajectoires sans collision à la commande pour exécuter ces trajectoires. Les principaux points présentés sont : 1) le contrôle de tout le corps permettant au robot humanoïde d'utiliser ses mains et ses bras pour contrôler les mouvements du système à chariot (par exemple, lors de virages serrés) ; 2) une approche sans capteur pour automatiquement sélectionner le jeu approprié de primitives en fonction du poids de la charge ; 3) un algorithme de planification de mouvement qui génère une trajectoire sans collisions en utilisant le jeu de primitive approprié et la carte construite de l'environnement ; 4) une technique de filtrage efficace permettant d'ignorer le chariot et le poids situés dans le champ de vue du robot tout en améliorant les performances générales des algorithmes de SLAM (Simultaneous Localization and Mapping) défini ; et 5) un processus continu et cohérent d'odométrie formés en fusionnant les informations visuelles et celles de l'odométrie du robot. Finalement, nous présentons des expériences menées sur un robot Nao, équipé d'un capteur RGB-D monté sur sa tête, poussant un chariot avec différentes masses. Nos expériences montrent que la charge utile peut être significativement augmentée sans changer physiquement le robot, et donc qu'il est possible d'augmenter la capacité du robot humanoïde dans des situations réelles. Dans la seconde partie, nous abordons le problème de faire naviguer deux robots humanoïdes dans un environnement encombré tout en transportant un très grand objet qui ne peut tout simplement pas être déplacé par un seul robot. Dans cette partie, plusieurs algorithmes et concepts présentés dans la partie précédente sont réutilisés et modifiés afin de convenir à un système comportant deux robot humanoides. Entre autres, nous avons un algorithme de planification de mouvement multi-robots utilisant un espace d'états à faible dimension afin de trouver une trajectoire sans obstacle en utilisant la carte construite de l'environnement, ainsi qu'un contrôle en temps réel efficace de tout le corps pour contrôler les mouvements du système robot-objet-robot en boucle fermée. Aussi, plusieurs systèmes ont été ajoutés, tels que la synchronisation utilisant le décalage relatif des robots, la projection des robots sur la base de leur position des mains ainsi que l'erreur de rétroaction visuelle calculée à partir de la caméra frontale du robot. Encore une fois, nous présentons des expériences faites sur des robots Nao équipés de capteurs RGB-D montés sur leurs têtes, se déplaçant avec un objet tout en contournant d'obstacles. Nos expériences montrent qu'un objet de taille non négligeable peut être transporté sans changer physiquement le robot.
Resumo:
Objetivo: Identificar las barreras para la unificación de una Historia Clínica Electrónica –HCE- en Colombia. Materiales y Métodos: Se realizó un estudio cualitativo. Se realizaron entrevistas semiestructuradas a profesionales y expertos de 22 instituciones del sector salud, de Bogotá y de los departamentos de Cundinamarca, Santander, Antioquia, Caldas, Huila, Valle del Cauca. Resultados: Colombia se encuentra en una estructuración para la implementación de la Historia Clínica Electrónica Unificada -HCEU-. Actualmente, se encuentra en unificación en 42 IPSs públicas en el departamento de Cundinamarca, el desarrollo de la HCEU en el país es privado y de desarrollo propio debido a las necesidades particulares de cada IPS. Conclusiones: Se identificaron barreras humanas, financieras, legales, organizacionales, técnicas y profesionales en los departamentos entrevistados. Se identificó que la unificación de la HCE depende del acuerdo de voluntades entre las IPSs del sector público, privado, EPSs, y el Gobierno Nacional.
Resumo:
The role of aquaculture in satisfying the global seafood demand is essential. The expansion of the aquaculture sector and the intensification of its activities have enhanced the circulation of infectious agents. Among these, the nervous necrosis virus (NNV) represents the most widespread in the Mediterranean basin. The NNV is responsible for a severe neuropathological condition named viral nervous necrosis (VNN), impacting hugely on fish farms due to the serious disease-associated losses. Therefore, it is fundamental to develop new strategies to limit the impact of VNN in this area, interconnecting several aspects of disease management, diagnosis and prevention. This PhD thesis project, focusing on aquatic animals’ health, deals with these topics. The first two chapters expand the knowledge on VNN epidemiology and distribution, showing the possibility of interspecies transmission, persistent infections and a potential carrier role for invertebrates. The third study expands the horizon of VNN diagnosis, by developing a quick and affordable multiplex RT-PCR able to detect and simultaneously discriminate between NNV variants, reducing considerably the time and costs of genotyping. The fourth study, with the development of a fluorescent in situ hybridization technique and its application to aquatic vertebrates and invertebrates’ tissues, contributes to expand the knowledge on NNV distribution at cellular level, localizing also the replication site of the virus. Finally, the last study dealing with an in vitro evaluation of the NNV susceptibility to a commercial biocide, stress the importance to implement proper disinfectant procedures in fish farms to prevent virus spread and disease outbreaks.
Resumo:
In the last decades, we saw a soaring interest in autonomous robots boosted not only by academia and industry, but also by the ever in- creasing demand from civil users. As a matter of fact, autonomous robots are fast spreading in all aspects of human life, we can see them clean houses, navigate through city traffic, or harvest fruits and vegetables. Almost all commercial drones already exhibit unprecedented and sophisticated skills which makes them suitable for these applications, such as obstacle avoidance, simultaneous localisation and mapping, path planning, visual-inertial odometry, and object tracking. The major limitations of such robotic platforms lie in the limited payload that can carry, in their costs, and in the limited autonomy due to finite battery capability. For this reason researchers start to develop new algorithms able to run even on resource constrained platforms both in terms of computation capabilities and limited types of endowed sensors, focusing especially on very cheap sensors and hardware. The possibility to use a limited number of sensors allowed to scale a lot the UAVs size, while the implementation of new efficient algorithms, performing the same task in lower time, allows for lower autonomy. However, the developed robots are not mature enough to completely operate autonomously without human supervision due to still too big dimensions (especially for aerial vehicles), which make these platforms unsafe for humans, and the high probability of numerical, and decision, errors that robots may make. In this perspective, this thesis aims to review and improve the current state-of-the-art solutions for autonomous navigation from a purely practical point of view. In particular, we deeply focused on the problems of robot control, trajectory planning, environments exploration, and obstacle avoidance.
Resumo:
Finding the optimum location for placing a dam on a river is usually a complicated process which generally forces thousands of people to flee their homes because they will be inundated during the filling of the dam. Dams could also attract people living in the surrounding area after their construction. The goal of this research is to check for dam attractiveness for people by comparing growth rates of population density in surrounding areas after dam construction to those associated with the period antecedent to the dam construction. To this aim, 1859 dams across the United States of America and high-resolution population distribution from 1790 to 2010 are examined. By grouping dams as a function of their main purpose, water supply dams are found to be, as expected, the most attractive dams for people, with the biggest growth in population density. Irrigation dams are next, followed by hydroelectricity, flood control, Navigation, and finally Recreation dams. Fishery dams and dams for other uses suffered a decrease in population in the years after their construction. The regions with the greatest population growth were found approximately 40-45 km from the dam and at distances greater than 90 km, whereas the regions with the greatest population decline or only a modest gain were located within 10-15 km of the dam.
Resumo:
The vinasse, awaste produced in the proportion of 13 liters for each liter of alcohol. It has a high potential of polluting groundwater and superficial water resources, changes the soil behaviour and can also develop sanilization problems. This work aims to evaluate the efficiency of the DC-resistivity method in detecting and mapping anomalies caused by inappropriate disposal of vinasse in an inactive infiltration tank located at Sepé-Tiarajú settlement of landless agricultural laborers in the Ribeirão Preto region. Besides, as secondary goals, this work aims to characterize the type of anomaly residue as well as to diagnose its influence inside and outside of the limits of the tank. Eleven electrical resistivity tomography profiles were carried out with the dipole-dipole array, 10m of dipoles length and 5 leveis of investigation The geophysical survey enabled us to conclude that the DC-resistivity method is appropriate for mapping the contamination plume caused by intense vinasse disposal and its influence. It enabled also to conclude that the contamination exceeds the tank limits. The vinasse influence can be characterized by low resistivity values between 10 Ohm.m and 90 Ohm.m and its behavior can be compared with the one of the chorume, which is also conductive.
Resumo:
Em função de suas condições de interface entre águas doces e salinas, desembocaduras estuarinas e lagunares constituem sistemas geomorfológicos altamente complexos e dinâmicos. Como conseqüência da variabilidade espacial e temporal dos fluxos de maré, o leito responde com uma grande variabilidade nas características morfológicas e sedimentares. Neste sentido, é possível relacionar diretamente a circulação de fundo e o transporte sedimentar com as feições submersas geradas. Perfis de ecossondagem, sonar de varredura lateral e sísmica de alta resolução, executados na desembocadura lagunar de Cananéia, revelaram a existência de uma dinâmica de fundo extremamente complexa, caracterizada por marcas onduladas e ondas de areia de alturas métricas. As maiores ondas de areia, localizadas em uma depressão na desembocadura lagunar, apresentam inversão de polaridade em sua assimetria, com a presença de ondas simétricas de grande tamanho no ponto de inversão. Este padrão morfológico não apresenta variação temporal em escala anual, sugerindo a persistência de um padrão de fluxos sobre o leito. Esta dinâmica revela, também, a constância de fluxos convergentes que aparentemente independem das condições de maré enchente ou vazante. Os resultados permitiram o estabelecimento de um primeiro modelo qualitativo de circulação de fundo na área, com aplicações potenciais na navegação e estudos de proteção da costa.
Resumo:
Introduction: The occurrence of urolithiasis in pregnancy represents a challenge in both diagnosis and treatment of this condition, because it presents risks not only to the mother but also to the fetus. Surgical treatment may be indicated for patients with infection, persistent pain, and obstruction of a solitary kidney. We present our experience on the management of pregnant patients with ureteral calculi and a review of the literature. Materials and Methods: The charts of 19 pregnant patients with obstructive ureteral calculi were retrospectively reviewed. Gestational age ranged from 13 to 33 weeks. In all patients, ureteral stone was diagnosed on abdominal ultrasound. In regard to localization, 15 calculi were in the distal ureter, 3 in the proximal ureter, and 1 in the interior of an ureterocele. Calculi size ranged from 6 to 10 mm (mean, 8 mm). The following criteria were used to indicate ureteroscopy: persistent pain with no improvement after clinical treatment, increase in renal dilation, or presence of uterine contractions. Nine patients (47.3%) were submitted to ureteroscopy. All calculi (100%) were removed with a stone basket extractor under continuous endoscopic vision. None of the calculi demanded the use of a lithotriptor. Results: Nine patients (47.3%) treated with clinical measurements presented no obstetric complications and spontaneous elimination of the calculi. Nine patients (47.3%) submitted to ureteroscopy had no surgical complications. There was remission of pain in all cases after ureteroscopy and ureteral catheter placement. Conclusion: The diagnosis and treatment of ureteral lithiasis in pregnant women present potential risks for the fetus and the mother. Conservative management is the first option, but ureteroscopy may be performed with safety and high success rates.
Resumo:
In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm, based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining ""absolute"" and ""relative"" safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 [14], using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the ""Automatic Dependent Surveillance-Broadcasting"" (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The avian hippocampus plays a pivotal role in memory required for spatial navigation and food storing. Here we have examined synaptic transmission and plasticity within the hippocampal formation of the domestic chicken using an in vitro slice preparation. With the use of sharp microelectrodes we have shown that excitatory synaptic inputs in this structure are glutamatergic and activate both NMDA-and AMPA-type receptors on the postsynaptic membrane. In response to tetanic stimulation, the EPSP displayed a robust long-term potentiation (LTP) lasting >1 hr. This LTP was unaffected by blockade of NMDA receptors or chelation of postsynaptic calcium. Application of forskolin increased the EPSP and reduced paired-pulse facilitation: (PPF), indicating an increase in release probability. In contrast, LTP was not associated with a change in the PPF ratio. Induction of LTP did not occlude the effects of forskolin. Thus, in contrast to NMDA receptor-independent LTP in the mammalian brain, LTP in the chicken hippocampus is not attributable to a change in the probability of transmitter release and does not require activation of adenylyl cyclase, These findings indicate that a novel form of synaptic plasticity might underlie learning in the avian hippocampus.
Resumo:
Community awareness of the sustainable use of land, water and vegetation resources is increasing. The sustainable use of these resources is pivotal to sustainable farming systems. However, techniques for monitoring the sustainable management of these resources are poorly understood and untested. We propose a framework to benchmark and monitor resources in the grains industry. Eight steps are listed below to achieve these objectives: (i) define industry issues; (ii) identify the issues through growers, stakeholder and community consultation; (iii) identify indicators (measurable attributes, properties or characteristics) of sustainability through consultation with growers, stakeholders, experts and community members, relating to: crop productivity; resource maintenance/enhancement; biodiversity; economic viability; community viability; and institutional structure; (iv) develop and use selection criteria to select indicators that consider: responsiveness to change; ease of capture; community acceptance and involvement; interpretation; measurement error; stability, frequency and cost of measurement; spatial scale issues; and mapping capability in space and through time. The appropriateness of indicators can be evaluated using a decision making system such as a multiobjective decision support system (MO-DSS, a method to assist in decision making from multiple and conflicting objectives); (v) involve stakeholders and the community in the definition of goals and setting benchmarking and monitoring targets for sustainable farming; (vi) take preventive and corrective/remedial action; (vii) evaluate effectiveness of actions taken; and (viii) revise indicators as part of a continual improvement principle designed to achieve best management practice for sustainable farming systems. The major recommendations are to: (i) implement the framework for resources (land, water and vegetation, economic, community and institution) benchmarking and monitoring, and integrate this process with current activities so that awareness, implementation and evolution of sustainable resource management practices become normal practice in the grains industry; (ii) empower the grains industry to take the lead by using relevant sustainability indicators to benchmark and monitor resources; (iii) adopt a collaborative approach by involving various industry, community, catchment management and government agency groups to minimise implementation time. Monitoring programs such as Waterwatch, Soilcheck, Grasscheck and Topcrop should be utilised; (iv) encourage the adoption of a decision making system by growers and industry representatives as a participatory decision and evaluation process. Widespread use of sustainability indicators would assist in validating and refining these indicators and evaluating sustainable farming systems. The indicators could also assist in evaluating best management practices for the grains industry.
Resumo:
The olfactory neuroepithelium is a highly plastic region of the nervous system that undergoes continual turnover of primary olfactory neurons throughout life. The mechanisms responsible for persistent growth and guidance of primary olfactory axons along the olfactory nerve are unknown. In the present study, we used antibodies against the Eph-related receptor, EphA5, to localise EphA5, and recombinant EDhA5-IgG fusion protein to localise its ligands. We found that although both EphA5 and its ligands were both expressed by primary olfactory neurons within the embryonic olfactory nerve pathway, there was no graded or complementary expression pattern. In contrast, the expression patterns altered postnatally such that primary olfactory neurons expressed the ligands, whereas the second-order olfactory neurons, the mitral cells, expressed EphA5. The role of EphA5 was analysed by blocking EphA5-ligand interactions in explant cultures of olfactory neuroepithelium using anti-EphA5 antibodies and recombinant EphA5. These perturbations reduced neurite outgrowth from explant cultures and suggest that intrafascicular axon repulsion may serve to limit adhesion and optimise conditions for axon growth. (C) 2000 Wiley-Liss, Inc.