900 resultados para particulate-reinforced Al composites
Resumo:
For elastoplastic particle reinforced metal matrix composites, failure may originate from interface debonding between the particles and the matrix, both elastoplastic and matrix fracture near the interface. To calculate the stress and strain distribution in these regions, a single reinforcing particle axisymmetric unit cell model is used in this article. The nodes at the interface of the particle and the matrix are tied. The development of interfacial decohesion is not modelled. Finite element modelling is used, to reveal the effects of particle strain hardening rate, yield stress and elastic modulus on the interfacial traction vector (or stress vector), interface deformation and the stress distribution within the unit cell, when the composite is under uniaxial tension. The results show that the stress distribution and the interface deformation are sensitive to the strain hardening rate and the yield stress of the particle. With increasing particle strain hardening rate and yield stress, the interfacial traction vector and internal stress distribution vary in larger ranges, the maximum interfacial traction vector and the maximum internal stress both increase, while the interface deformation decreases. In contrast, the particle elastic modulus has little effect on the interfacial traction vector, internal stress and interface deformation.
Resumo:
Fibre-Reinforced Plastics (FRPs) have been used in civil aerospace vehicles for decades. The current state-of-the-art in airframe design and manufacture results in approximately half the airframe mass attributable to FRP materials. The continual increase in the use of FRP materials over metallic alloys is attributable to the material's superior specific strength and stiffness, fatigue performance and corrosion resistance. However, the full potential of these materials has yet to be exploited as analysis methods to predict physical failure with equal accuracy and robustness are not yet available. The result is a conservative approach to design, but one that can bring benefit via increased inspection intervals and reduced cost over the vehicle life. The challenge is that the methods used in practice are based on empirical tests and real relationships and drivers are difficult to see in this complex process and so the trade-off decision is challenging and uncertain. The aim of this feasibility study was to scope a viable process which could help develop some rules and relationships based on the fundamental mechanics of composite material and the economics of production and operation, which would enhance understanding of the role and impact of design allowables across the life of a composite structure.
Resumo:
A finite element model is developed to predict the stress-strain behaviour of particulate composites with fully unbonded filler particles. This condition can occur because of the lack of adhesion property of the filler surface. Whilst part of the filler particle is separated from the matrix, another section of filler keeps in contact with the matrix because of the lateral compressive displacement of the matrix. The slip boundary condition is imposed on the section of the interface that remains closed. The states of stress and displacement fields are obtained. The location of any further deformation through crazing or shear band formation is identified. A completely unbonded inclusion with partial slip at a section of the interface reduces the concentration of the stress at the interface significantly. Whereas this might lead to slightly higher strength, it decreases the load transfer efficiency and stiffness of this type of composite.
Resumo:
The ability to predict the mechanical behavior of polymer composites is crucial for their design and manufacture. Extensive studies based on both macro- and micromechanical analyses are used to develop new insights into the behavior of composites. In this respect, finite element modeling has proved to be a particularly powerful tool. In this article, we present a Galerkin scheme in conjunction with the penalty method for elasticity analyses of different types of polymer composites. In this scheme, the application of Green's theorem to the model equation results in the appearance of interfacial flux terms along the boundary between the filler and polymer matrix. It is shown that for some types of composites these terms significantly affect the stress transfer between polymer and fillers. Thus, inclusion of these terms in the working equations of the scheme preserves the accuracy of the model predictions. The model is used to predict the most important bulk property of different types of composites. Composites filled with rigid or soft particles, and composites reinforced with short or continuous fibers are investigated. For each case, the results are compared with the available experimental results and data obtained from other models reported in the literature. Effects of assumptions made in the development of the model and the selection of the prescribed boundary conditions are discussed.
Resumo:
Improvements in the structural performance of glulam timber beams by the inclusion of reinforcing materials can improve both the service performance and ultimate capacity. In recent years research focusing on the addition of fibre reinforced polymers to strengthen members has yielded positive results. However, the FRP material is still a relatively expensive material and its full potential has not been realised in combination with structural timber. This paper describes a series of four-point bending tests that were conducted, under service and ultimate loads, on post-tensioned glulam timber beams where the reinforcing tendon used was 12 mm diameter Basalt Fibre Reinforced Polymer (BFRP). The research was designed to evaluate the additional benefits of including an active type of reinforcement, by post-tensioning the BFRP tendon, as opposed to the passive approach of simply reinforcing the timber beam.
From the laboratory investigations, it was established that there was a 16% increase in load carrying capacity, in addition to a 14% reduction in deflection under service loads when members containing the post-tensioned BFRP composite are compared with control timber specimens. Additionally a more favourable ductile failure mode was witnessed compared to the brittle failure of an unreinforced timber beam. The results support the assumption that by initially stressing the embedded FRP tendon the structural benefits experienced by the timber member increase in a number of ways, indicating that there is significant scope for this approach in practical applications.
Resumo:
Improvements in the structural performance of glulam timber beams by the inclusion of reinforcing materials can increase both the service performance and ultimate capacity. In recent years research focusing on the addition of fibre reinforced polymers (FRP) to strengthen members has yielded positive results. However, the FRP material is still relatively expensive and its full potential in combination with structural timber has not been realised. This paper describes a series of four-point bending tests that were conducted, under service loads and to failure, on unreinforced, reinforced and post-tensioned glulam timber beams, where the reinforcing tendon used was 12mm diameter basalt fibre reinforced polymer (BFRP). The research was designed to evaluate the benefits offered by including an active reinforcement in contrast to the passive reinforcement typically used within timber strengthening works, in addition to establishing the affect that bonding the reinforcing tendon has on the material’s performance. Further experimental tests have been developed to investigate the long-term implications of this research, with emphasis placed upon creep and loss of post-tensioning.
The laboratory investigations established that the flexural strength and stiffness increased for both the unbonded and bonded post-tensioned timbers compared to the unreinforced beams. Timber that was post-tensioned with an unbonded BFRP tendon showed a flexural strength increase of 2.8% and an increase in stiffness of 8.7%. Post-tensioned beams with a bonded BFRP tendon showed increases in flexural strength and stiffness of 16.6% and 11.5% respectively.