919 resultados para particles
Resumo:
The paper overviews recent and ongoing efforts by the authors to develop a design methodology to stabilize isolated relative equilibria in a kinematic model of identical particles moving in the plane at unit speed. Isolated relative equilibria correspond to either parallel motion of all particles with fixed relative spacing or to circular motion of all particles about the same center with fixed relative headings. © Springer-Verlag Berlin Heidelberg 2006.
Resumo:
We provide feedback control laws to stabilize formations of multiple, unit speed particles on smooth, convex, and closed curves with definite curvature. As in previous work we exploit an analogy with coupled phase oscillators to provide controls which isolate symmetric particle formations that are invariant to rigid translation of all the particles. In this work, we do not require all particles to be able to communicate; rather we assume that inter-particle communication is limited and can be modeled by a fixed, connected, and undirected graph. Because of their unique spectral properties, the Laplacian matrices of circulant graphs play a key role. The methodology is demonstrated using a superellipse, which is a type of curve that includes circles, ellipses, and rounded rectangles. These results can be used in applications involving multiple autonomous vehicles that travel at constant speed around fixed beacons. ©2006 IEEE.
Resumo:
This paper presents a Lyapunov design for the stabilization of collective motion in a planar kinematic model of N particles moving at constant speed. We derive a control law that achieves asymptotic stability of the splay state formation, characterized by uniform rotation of N evenly spaced particles on a circle. In designing the control law, the particle headings are treated as a system of coupled phase oscillators. The coupling function which exponentially stabilizes the splay state of particle phases is combined with a decentralized beacon control law that stabilizes circular motion of the particles. © 2005 IEEE.
Resumo:
Mechanical degradation is thought to be one of the causes of capacity fade within Lithium-Ion batteries. In this work we develop a coupled stress-diffusion model for idealized spherical storage particles, which is analogous to the development of thermal strains. We then non-dimensionalize the model and identify three important parameters that control the development of stress within these particles. We can therefore use a wide number of values for these parameters to make predictions about the stress responses of different materials. The maximum stress developed within the particle for different values of these parameters are plotted as stress maps. A two dimensional model of a battery was then developed, in order to study the effect of particle morphology. Copyright © 2012 by ASME.
Resumo:
Magnetic nanoparticles are frequently coated with SiO2to improve their functionality and bio-compatibility in a range of biomedical and polymer nanocomposile applications. In this paper, a scalable flame aerosol technology is used to produce highly dispersible, superparamagnetic iron oxide nanoparticles hermetically coaled with silica to retain full magnetization performance. Iron oxide particles were produced by flame spray pyrolysis (FSP) of iron acelylacetonale in xylene/acetonitrile solutions, and the resulting aerosol was in situ coaled with SiO2 by oxidation of swirling hexamethlydisiloxane vapor. The process allows independent control of the core Fe2O3, particle properties and the thickness of their silica coaling film. This ensures that the non-magnetic SiO2 layer can be closely controlled and minimized. The optimal SiO2 content for complete (hermetic) encapsulation of the magnetic core particles was determined by isopropanol chemisorption. The magnetization of Fe2O3 coated with about 2 nm thin SiO2 layers was nearly identical lo that of uncoated, pure Fe2O3 nanoparlicles.
Resumo:
Magnetic nanoparticles are frequently coated with SiO2 to improve their functionality and biocom-patibility in a range of biomedical and polymer nanocomposite applications. In this paper, a scalable flame aerosol technology is used to produce highly dispersible, superparamagnetic iron oxide nanoparticles hermetically coated with silica to retain full magnetization performance. Iron oxide particles were produced by flame spray pyrolysis of iron acetylacetonate in xylene/acetonitrile solutions and the resulting aerosol was in situ coated with silicon dioxide by oxidation of swirling hexamethlydisiloxane vapor. The process allows independent control of the core Fe2O3 (maghemite) particle properties and the thickness of their silica coating film. This ensures that the nonmagnetic SiO2 layer can be closely controlled and minimized. The optimal SiO2 content for complete (hermetic) encapsulation of the magnetic core particles was determined by isopropanol chemisorption. The magnetization of Fe 2O3 coated with about 2 nm thin SiO2 layers was nearly identical to that of uncoated, pure Fe2O3 nanoparticles. © 2009 American Chemical Society.
Resumo:
A High Temperature Condensation Particle Counter (HT-CPC) is described that operates at an elevated temperature of up to ca. 300. °C such that volatile particles from typical combustion sources are not counted. The HT-CPC is functionally identical to a conventional CPC, the main challenge being to find suitable non-hazardous working fluids, with good stability, and an appropriate vapour pressure. Some key design features are described, and results of modelling which predict the HT-CPC counting efficiency. Experimental results are presented for several candidate fluids when the HT-CPC was challenged with ambient, NaCl and diesel soot particles, and the results show good agreement with modelled predictions, and confirm that counting of particles of diameters down to at least 10. nm was achievable. Possible applications are presented, including measurement of particles from a diesel car engine and comparison with a near PMP system. © 2014 Elsevier Ltd.
Resumo:
Exposure to indoor air pollution (IAP) from the combustion of biomass fuels is an important cause of morbidity and mortality in developing countries. In the work discussed in this paper we evaluated the endocrine activity of soot particles from biomass fuels by using yeast bioassay. These pollutants could have beta-galactosidase activity with a relative potency (RP) about 10(-7)-10(-9) that of estradiol. Soot particles from wood and straw combustion only partially induced beta-galactosidase activity whereas others produced fully inductive activity in the yeast assay system. These pollutants did not have estrogen antagonist and progesterone agonist activity within the defined concentration range. However, these pollutants require 2-4 orders of magnitude higher IC50 to inhibit the activity of progesterone in a similar dose-response manner to mifepristone. We therefore propose that the endocrine activity of some environmental pollutants may be because of inhibition of the progesterone receptor (hPR). GC-MS results showed that substituted polycyclic aromatic hydrocarbon (PAH) compounds, substituted phenolic compounds and derivatives, aromatic carbonyl compounds, and phytosteroids in these soot particles may be mimicking endogenous hormones.
Resumo:
In this article, the ZnO quantum dots-SiO2 (Z-S) nanocomposite particles were first synthesized. Transparent Z-S/epoxy super-nanocomposites were then prepared by introducing calcined Z-S nanocomposite particles with a proper ratio of ZnO to SiO2 into a transparent epoxy matrix in terms of the filler-matrix refractive index matching principle. It was shown that the epoxy super-nanocomposites displayed intense luminescence with broad emission spectra. Moreover, the epoxy super-nanocomposites showed the interesting afterglow phenomenon with a long phosphorescence lifetime that was not observed for ZnO-QDs/epoxy nanocomposites. Finally, the transparent and light-emitting Z-S/epoxy super-nanocomposites were successfully employed as encapsulating materials for synthesis of highly bright LED lamps.
Resumo:
Monomers of methacrylate with various pi -conjugated pendants were designed and prepared in our laboratory, The monomer with suitable end-group was successfully assembled with nano-scale inorganic particles to form an orderly-aligned structure that showed special optical properties, both absorption and emission band were much red-shifted compared with the monomer, A new type of organic/inorganic hybrid materials was obtained by in situ polymerization of the assembly, The hybrid materials could also show special optical properties as the assembly, This might open a new route to tune the emission color.
Resumo:
We report on high-frequency (300-700 GHz) ferromagnetic resonance (HF-FMR) measurements on cobalt superparamagnetic particles with strong uniaxial effective anisotropy. We derive the dynamical susceptibility of the system on the basis of an independent-grain model by using a rectangular approach. Numerical simulations give typical line shapes depending on the anisotropy, the gyromagnetic ratio, and the damping constant. HF-FMR experiments have been performed on two systems of ultrafine cobalt particles of different sizes with a mean number of atoms per particles of 150 +/- 20 and 310 +/- 20. In both systems, the magnetic anisotropy is found to be enhanced compared to the bulk value, and increases as the particle size decreases, in accordance with previous determinations from magnetization measurements. Although no size effect has been observed on the gyromagnetic ratio, the transverse relaxation time is two orders of magnitude smaller than the bulk value indicating strong damping effects, possibly originating from surface spin disorders.
Resumo:
We investigate high-field ferromagnetic resonance of superparamagnetic particles with uniaxial anisotropy, In this case, since the field is large enough to saturate the magnetization, the thermal orientational fluctuations of the magnetic moment of the particle are negligible. Thus, we derive the dynamic susceptibility of the system on the basis of an independent particle model. High-field ferromagnetic resonance has been performed on fine cobalt particles, The analysis of the spectra obtained at different frequencies allows us to estimate the effective magnetic anisotropy, the gyromagnetic ratio, and the transverse relaxation time. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A modified T-matrix method is presented to compute the scattered fields of various realistically shaped particles; then the radiation forces on the particles can be calculated via the Maxwell stress tenser integral. Numerical results of transverse trapping efficiencies of a focused Gaussian beam on ellipsoidal and spherical particles with the same volume are compared, which show that the shape and orientation of particles affect the maximal transverse trapping force and the displacement corresponding to the maximum. The effect of the polarization direction of the incident beam on the transverse trapping forces is also revealed. (c) 2007 Optical Society of America.