964 resultados para pacs: neural computing technologies
Resumo:
This paper presents an artificial neural network approach for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. The accuracy of the wind power forecasting attained with the proposed approach is evaluated against persistence and ARIMA approaches, reporting the numerical results from a real-world case study.
Resumo:
7th Mediterranean Conference on Information Systems, MCIS 2012, Guimaraes, Portugal, September 8-10, 2012, Proceedings Series: Lecture Notes in Business Information Processing, Vol. 129
Resumo:
This chapter addresses technical issues concerning digital technologies. Radiological equipment and technique are briefly introduced together with a discussion about requirements and advantages of digital technologies. Digital technologies offer several advantages when compared to conventional analogical systems, or screen–film (SF) systems. While in clinical practice the practitioners should be aware of technical factors such as image acquisition, management of patient dose, and diagnostic image quality. Thus, digital technologies require an up-to-date scientific knowledge concerning their use in projection radiography. In this chapter, technical considerations concerning digital technologies are provided.
Resumo:
Plain radiography still accounts for the vast majority of imaging studies that are performed at multiple clinical instances. Digital detectors are now prominent in many imaging facilities and they are the main driving force towards filmless environments. There has been a working paradigm shift due to the functional separation of acquisition, visualization, and storage with deep impact in the imaging workflows. Moreover with direct digital detectors images are made available almost immediately. Digital radiology is now completely integrated in Picture Archiving and Communication System (PACS) environments governed by the Digital Imaging and Communications in Medicine (DICOM) standard. In this chapter a brief overview of PACS architectures and components is presented together with a necessarily brief account of the DICOM standard. Special focus is given to the DICOM digital radiology objects and how specific attributes may now be used to improve and increase the metadata repository associated with image data. Regular scrutiny of the metadata repository may serve as a valuable tool for improved, cost-effective, and multidimensional quality control procedures.
Resumo:
A new high throughput and scalable architecture for unified transform coding in H.264/AVC is proposed in this paper. Such flexible structure is capable of computing all the 4x4 and 2x2 transforms for Ultra High Definition Video (UHDV) applications (4320x7680@ 30fps) in real-time and with low hardware cost. These significantly high performance levels were proven with the implementation of several different configurations of the proposed structure using both FPGA and ASIC 90 nm technologies. In addition, such experimental evaluation also demonstrated the high area efficiency of theproposed architecture, which in terms of Data Throughput per Unit of Area (DTUA) is at least 1.5 times more efficient than its more prominent related designs(1).
Resumo:
Integrated manufacturing constitutes a complex system made of heterogeneous information and control subsystems. Those subsystems are not designed to the cooperation. Typically each subsystem automates specific processes, and establishes closed application domains, therefore it is very difficult to integrate it with other subsystems in order to respond to the needed process dynamics. Furthermore, to cope with ever growing marketcompetition and demands, it is necessary for manufacturing/enterprise systems to increase their responsiveness based on up-to-date knowledge and in-time data gathered from the diverse information and control systems. These have created new challenges for manufacturing sector, and even bigger challenges for collaborative manufacturing. The growing complexity of the information and communication technologies when coping with innovative business services based on collaborative contributions from multiple stakeholders, requires novel and multidisciplinary approaches. Service orientation is a strategic approach to deal with such complexity, and various stakeholders' information systems. Services or more precisely the autonomous computational agents implementing the services, provide an architectural pattern able to cope with the needs of integrated and distributed collaborative solutions. This paper proposes a service-oriented framework, aiming to support a virtual organizations breeding environment that is the basis for establishing short or long term goal-oriented virtual organizations. The notion of integrated business services, where customers receive some value developed through the contribution from a network of companies is a key element.
Resumo:
The large increase of renewable energy sources and Distributed Generation (DG) of electricity gives place to the Virtual Power Producer (VPP) concept. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. One of the most important tasks of a VPP is the conjugation of technologies to obtain a consistent set of associated producers and allow them to operate in the electric market. This paper presents some characteristics regarding already existent technologies and relevant aspects for producers and for VPP.
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
This paper proposes artificial neural networks in combination with wavelet transform for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. Results from a real-world case study are presented. A comparison is carried out, taking into account the results obtained with other approaches. Finally, conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work describes a methodology to extract symbolic rules from trained neural networks. In our approach, patterns on the network are codified using formulas on a Lukasiewicz logic. For this we take advantage of the fact that every connective in this multi-valued logic can be evaluated by a neuron in an artificial network having, by activation function the identity truncated to zero and one. This fact simplifies symbolic rule extraction and allows the easy injection of formulas into a network architecture. We trained this type of neural network using a back-propagation algorithm based on Levenderg-Marquardt algorithm, where in each learning iteration, we restricted the knowledge dissemination in the network structure. This makes the descriptive power of produced neural networks similar to the descriptive power of Lukasiewicz logic language, minimizing the information loss on the translation between connectionist and symbolic structures. To avoid redundance on the generated network, the method simplifies them in a pruning phase, using the "Optimal Brain Surgeon" algorithm. We tested this method on the task of finding the formula used on the generation of a given truth table. For real data tests, we selected the Mushrooms data set, available on the UCI Machine Learning Repository.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simu-lator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM pro-vides several dynamic strategies for agents’ behaviour. This paper presents a method that aims to provide market players strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses an auxiliary forecasting tool, e.g. an Artificial Neural Net-work, to predict the electricity market prices, and analyses its forecasting error patterns. Through the recognition of such patterns occurrence, the method predicts the expected error for the next forecast, and uses it to adapt the actual forecast. The goal is to approximate the forecast to the real value, reducing the forecasting error.
Resumo:
Urban Computing (UrC) provides users with the situation-proper information by considering context of users, devices, and social and physical environment in urban life. With social network services, UrC makes it possible for people with common interests to organize a virtual-society through exchange of context information among them. In these cases, people and personal devices are vulnerable to fake and misleading context information which is transferred from unauthorized and unauthenticated servers by attackers. So called smart devices which run automatically on some context events are more vulnerable if they are not prepared for attacks. In this paper, we illustrate some UrC service scenarios, and show important context information, possible threats, protection method, and secure context management for people.
Resumo:
OBJETIVO: Avaliar as redes neurais recorrentes enquanto técnica preditiva para séries temporais em saúde. MÉTODOS: O estudo foi realizado durante uma epidemia de cólera ocorrida no Estado do Ceará, em 1993 e 1994, a partir da sobremortalidade tendo como causa básica as infecções intestinais mal definidas (CID-9). O número mensal de óbitos por essa causa, referente ao período de 1979 a 1995 no Estado do Ceará, foram obtidos do Sistema de Informação de Mortalidade (SIM) do Ministério da Saúde. Estruturou-se uma rede com dois neurônios na camada de entrada, 12 na camada oculta, um neurônio na camada de saída e um na camada de memória. Todas as funções de ativação eram a função logística. O treinamento foi realizado pelo método de backpropagation, com taxa de aprendizado de 0,01 e momentum de 0,9, com dados de janeiro de 1979 a junho de 1991. O critério para fim do treinamento foi atingir 22.000 epochs. Compararam-se os resultados com os de um modelo de regressão binomial negativa. RESULTADOS: A predição da rede neural a médio prazo foi adequada, em dezembro de 1993 e novembro e dezembro de 1994. O número de óbitos registrados foi superior ao limite do intervalo de confiança. Já o modelo regressivo detectou sobremortalidade a partir de março de 1992. CONCLUSÕES: A rede neural se mostrou capaz de predição, principalmente no início do período, como também ao detectar uma alteração concomitante e posterior à ocorrência da epidemia de cólera. No entanto, foi menos precisa do que o modelo de regressão binomial, que se mostrou mais sensível para detectar aberrações concomitantes à circulação da cólera.
Resumo:
The activity of Control Center operators is important to guarantee the effective performance of Power Systems. Operators’ actions are crucial to deal with incidents, especially severe faults like blackouts. In this paper, we present an Intelligent Tutoring approach for training Portuguese Control Center operators in tasks like incident analysis and diagnosis, and service restoration of Power Systems. Intelligent Tutoring System (ITS) approach is used in the training of the operators, having into account context awareness and the unobtrusive integration in the working environment. Several Artificial Intelligence techniques were criteriously used and combined together to obtain an effective Intelligent Tutoring environment, namely Multiagent Systems, Neural Networks, Constraint-based Modeling, Intelligent Planning, Knowledge Representation, Expert Systems, User Modeling, and Intelligent User Interfaces.
Resumo:
Electrical activity is extremely broad and distinct, requiring by one hand, a deep knowledge on rules, regulations, materials, equipments, technical solutions and technologies and assistance in several areas, as electrical equipment, telecommunications, security and efficiency and rational use of energy, on the other hand, also requires other skills, depending on the specific projects to be implemented, being this knowledge a characteristic that belongs to the professionals with relevant experience, in terms of complexity and specific projects that were made.