917 resultados para p38 MAPK inhibitor
Resumo:
Smad (Sma and Mad-related protein) 2/3 are downstream signaling molecules for TGF-β and myostatin (Mstn). Recently, Mstn was shown to induce reactive oxygen species (ROS) in skeletal muscle via canonical Smad3, nuclear factor-κB, and TNF-α pathway. However, mice lacking Smad3 display skeletal muscle atrophy due to increased Mstn levels. Hence, our aims were first to investigate whether Mstn induced muscle atrophy in Smad3(-/-) mice by increasing ROS and second to delineate Smad3-independent signaling mechanism for Mstn-induced ROS. Herein we show that Smad3(-/-) mice have increased ROS levels in skeletal muscle, and inactivation of Mstn in these mice partially ablates the oxidative stress. Furthermore, ROS induction by Mstn in Smad3(-/-) muscle was not via nuclear factor-κB (p65) signaling but due to activated p38, ERK MAPK signaling and enhanced IL-6 levels. Consequently, TNF-α, nicotinamide adenine dinucleotide phosphate oxidase, and xanthine oxidase levels were up-regulated, which led to an increase in ROS production in Smad3(-/-) skeletal muscle. The exaggerated ROS in the Smad3(-/-) muscle potentiated binding of C/EBP homology protein transcription factor to MuRF1 promoter, resulting in enhanced MuRF1 levels leading to muscle atrophy.
Resumo:
Angioedema related to a deficiency in the C1-inhibitor protein is characterized by its lack of response to therapies including antihistamine, steroids, and epinephrine. In the case of laryngeal edema, mortality rate is approximately 30 percent. The first case of the acquired form of angioedema related to a deficiency in C1-inhibitor was published in 1972. In our paper, we present a case of an acquired form of angioedema of the oropharyngeal region secondary to the simultaneous occurrence of two causative factors: neutralization of C1-inhibitor by an autoantibody and the use of an angiotensin convertin enzyme inhibitor.
Resumo:
The MAPK family is composed of three majors kinases, JNK, p38 and ERK1/2, and is implicated in many degenerative processes, including retinal cell death. The purpose of our study was to evaluate the activation of ERK1/2 kinase, and its potential role in Müller cell gliosis, during photoreceptor cell death in Rpe65(-/-) mice. We assayed ERK1/2 mRNA and protein levels, and evaluated ERK1/2 phosphorylation involved in kinase activation, in 2, 4 and 6 month-old Rpe65(-/-) mice and in age-matched wild-type controls. No differences in ERK1/2 expression were detected between Rpe65(-/-) and wild-type mice, however, ERK1/2 phosphorylation was dramatically increased in the knock out mice at 4 and 6 months-of-age. Phosphorylated ERK1/2 co-localized with GFAP in the ganglion cell layer, and correlated with an increase in GFAP protein expression and retinal cell death. Accumulation of cFOS protein in the ganglion cell layer occurred concomitant with pERK1/2 activation. Müller cell proliferation was not observed. ERK1/2 activation did not occur in 2 month-old Rpe65(-/-) or in the Rpe65(-/-)/Gnat1(-/-) mice, in which no degeneration was evident. The observed activation ERK1/2 and GFAP, both markers of Müller cell gliosis, in the absence of Müller cell proliferation, is consistent with the activation of atypical gliosis occurring during the slow process of degeneration in Rpe65(-/-) mice. As Müller cell gliosis is activated in many neuronal and retinal degenerative diseases, further studies will be needed to determine whether atypical gliosis in Rpe65(-/-) mice contributes to, or protects against, the pathogenesis occurring in this model of Leber congenital amaurosis.
Resumo:
OBJECTIVE: In addition to its haemodynamic effects, angiotensin II (AngII) is thought to contribute to the development of cardiac hypertrophy via its growth factor properties. The activation of mitogen-activated protein kinases (MAPK) is crucial for stimulating cardiac growth. Therefore, the present study aimed to determine whether the trophic effects of AngII and the AngII-induced haemodynamic load were associated with specific cardiac MAPK pathways during the development of hypertrophy. Methods The activation of the extracellular-signal-regulated kinase (ERK), the c-jun N-terminal kinase (JNK) and the p38 kinase was followed in the heart of normotensive and hypertensive transgenic mice with AngII-mediated cardiac hypertrophy. Secondly, we used physiological models of AngII-dependent and AngII-independent renovascular hypertension to study the activation of cardiac MAPK pathways during the development of hypertrophy. RESULTS: In normotensive transgenic animals with AngII-induced cardiac hypertrophy, p38 activation is associated with the development of hypertrophy while ERK and JNK are modestly stimulated. In hypertensive transgenic mice, further activation of ERK and JNK is observed. Moreover, in the AngII-independent model of renovascular hypertension and cardiac hypertrophy, p38 is not activated while ERK and JNK are strongly stimulated. In contrast, in the AngII-dependent model, all three kinases are stimulated. CONCLUSIONS: These data suggest that p38 activation is preferentially associated with the direct effects of AngII on cardiac cells, whereas stimulation of ERK and JNK occurs in association with AngII-induced mechanical stress.
Resumo:
Inhibition of coagulation factor XII (FXII) activity represents an attractive approach for the treatment and prevention of thrombotic diseases. The few existing FXII inhibitors suffer from low selectivity. Using phage display combined to rational design, we developed a potent inhibitor of FXII with more than 100-fold selectivity over related proteases. The highly selective peptide macrocycle is a promising candidate for the control of FXII activity in antithrombotic therapy and a valuable tool in hematology research.
Resumo:
The 26S proteasome constitutes an essential degradation apparatus involved in the consistent recycling of misfolded and damaged proteins inside cells. The aberrant activation of the proteasome has been widely observed in various types of cancers and implicated in the development and progression of carcinogenesis. In the era of targeted therapies, the clinical use of proteasome inhibitors necessitates a better understanding of the molecular mechanisms of cell death responsible for their cytotoxic action, which are reviewed here in the context of sensitization of malignant gliomas, a tumor type particularly refractory to conventional treatments.
Resumo:
A new, orally active angiotensin converting enzyme (ACE) inhibitor, CGS 14824A, was evaluated in 12 healthy male volunteers. Two groups each of 6 volunteers were given 5 or 10 mg once daily p.o. for 8 days. Four hours after the first and the last morning doses, plasma angiotensin II, aldosterone and plasma converting enzyme activity had fallen, while blood angiotensin I and plasma renin activity had risen. Throughout the study, more than 90% inhibition of ACE was found immediately before giving either the 5 or 10 mg dose and 50% blockade was still present 72 h following the last dose. Based on the determination of ACE, there was no evidence of drug accumulation. No significant change in blood pressure or heart rate was observed during the course of the study. CGS 14824A was an effective, orally active, long-lasting and well tolerated converting enzyme inhibitor.
Resumo:
A new, orally active angiotensin converting enzyme (ACE) inhibitor, CGS 16617, has been evaluated in normotensive subjects during acute and prolonged administration. Single ascending doses of CGS 16617 20 to 100 mg were given to 9 normotensive volunteers at one week intervals and the changes in blood pressure, plasma ACE and renin activity were examined up to 72 h after drug intake. Also, CGS 16617 50 mg/day or placebo were given for 30 days to 8 and 6 normotensive subjects, respectively, maintained on an unrestricted salt diet. Blood pressure was measured daily in the office and ambulatory blood pressure profiles were also obtained before, during and after therapy, using the Remler M 2000 blood pressure recording system. CGS 16617 was an effective and long lasting ACE inhibitor. It did not induce a consistent change in blood pressure, but, the individual responses were very variable and several subjects experienced a clear decrease in the average of the blood pressures recorded during the daytime.
Resumo:
Purpose: Retinoblastoma is a malignant tumor that usually develops in early childhood. During retinoblastoma spreading, RB1 gene inactivation is followed by additional genomic modifications which progressively lead to resistance of tumor cells to death. Drugs that act at downstream levels of death signaling pathways should therefore be interesting in killing retinoblastoma cells. ABT-737, a BH3 mimetic molecule effective at the mitochondrial level, has been shown to induce apoptosis in different human tumoral cell lines as well as in primary patient-derived cells, and in a mouse xenograph model. Methods: In this report, we analyzed the pro-death effect of ABT-737 on two human retinoblastoma cell lines, Y79 and WERI-Rb, as well as on the mouse photoreceptor cell line 661W. Results: We observed that ABT-737 was very effective as a single agent in inducing human WERI-Rb cells apoptosis without affecting the mouse 661W photoreceptor cells. However human Y79 cells were resistant to ABT-737, as a probable consequence of the absence of Bax. The high sensitivity of WERI-Rb to ABT-737 can be increased by downregulating Mcl-1 using the proteasome inhibitor MG-132. Preliminary analysis in primary mouse retinoblastoma tumoral cell lines predicts high sensitivity to ABT-737. Conclusion: Our data suggest that ABT-737 or related compounds could be a highly effective drug in the treatment of some retinoblastomas.
Resumo:
A class of secreted poxvirus tumor necrosis factor (TNF)-binding proteins has been isolated from Tanapox-infected cell supernatants. The inhibitor bound to a TNF-affinity column and was identified as the product of the 2L gene. Sequence analysis of 2L family members from other yatapoxviruses and swinepox virus yielded no sequence homology to any known cellular gene. The expressed Tanapox virus 2L protein bound to human TNF with high affinity (K(d) = 43 pM) and exhibits an unusually slow off-rate. However, 2L is unable to bind to a wide range of human TNF family members. The 2L protein can inhibit human TNF from binding to TNF receptors I and II as well as block TNF-induced cytolysis. Thus, Tanapox virus 2L represents an inhibitor of human TNF and offers a unique strategy with which to modulate TNF activity.
Resumo:
Glioblastomas (GBMs) are the most frequent and malignant brain tumors in adults. Glucocorticoids (GCs) are routinely used in the treatment of GBMs for their capacity to reduce the tumor-associated edema. Few in vitro studies have suggested that GCs inhibit the migration and invasion of GBM cells through the induction of MAPK phosphatase 1 (MKP-1). Macrophage migration inhibitory factor (MIF), an endogenous GC antagonist is up-regulated in GBMs. Recently, MIF has been involved in tumor growth and migration/invasion and specific MIF inhibitors have been developed on their capacity to block its enzymatic tautomerase activity site. In this study, we characterized several glioma cell lines for their MIF production. U373 MG cells were selected for their very low endogenous levels of MIF. We showed that dexamethasone inhibits the migration and invasion of U373 MG cells, through a glucocorticoid receptor (GR)- dependent inhibition of the ERK1/2 MAPK pathway. Oppositely, we found that exogenous MIF increases U373 MG migration and invasion through the stimulation of the ERK1/2 MAP kinase pathway and that this activation is CD74 independent. Finally, we used the Hs 683 glioma cells that are resistant to GCs and produce high levels of endogenous MIF, and showed that the specific MIF inhibitor ISO-1 could restore dexamethasone sensitivity in these cells. Collectively, our results indicate an intricate pathway between MIF expression and GC resistance. They suggest that MIF inhibitors could increase the response of GBMs to corticotherapy.
Resumo:
Aim: 5-fluoro-2'-deoxyuridine (FdUrd) depletes the endogenous 5'-deoxythymidine triphosphate (dTTP) pool. We hypothesized whether uptake of exogenous dThd analogues could be favoured through a feedback enhanced salvage pathway and studied the FdUrd effect on cellular uptake of 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) and 5-125I-iodo-2'-deoxyuridine (125I-IdUrd) in different cancer cell lines in parallel. Methods: Cell uptake of 18F-FLT and 125I-IdUrd was studied in 2 human breast, 2 colon cancer and 2 glioblastoma lines. Cells were incubated with/without 1 µmol/l FdUrd for 1 h and, after washing, with 1.2 MBq 18F-FLT or 125I-IdUrd for 0.3 to 2 h. Cell bound 18F-FLT and 125I-IdUrd was counted and expressed in % incubated activity (%IA). Kinetics of 18F-FLT cell uptake and release were studied with/without FdUrd modulation. 2'-3H-methyl-fluorothymidine (2'-3H-FLT) uptake with/without FdUrd pretreatment was tested on U87 spheroids and monolayer cells. Results: Basal uptake at 2 h of 18F-FLT and 125I-IdUrd was in the range of 0.8-1.0 and 0.4-0.6 Bq/cell, respectively. FdUrd pretreatment enhanced 18F-FLT and 125I-IdUrd uptake 1.2-2.1 and 1.7-4.4 fold, respectively, while co-incubation with excess thymidine abrogated all 18F-FLT uptake. FdUrd enhanced 18F-FLT cellular inflow in 2 breast cancer lines by factors of 1.8 and 1.6, respectively, while outflow persisted at a slightly lower rate. 2'-3H-FLT basal uptake was very low while uptake increase after FdUrd was similar in U87 monolayer cells and spheroids. Conclusions: Basal uptake of 18F-FLT was frequently higher than that of 125I-IdUrd but FdUrd induced uptake enhancement was stronger for 125I-IdUrd in five of six cell lines. 18F-FLT outflow from cells might be an explanation for the observed difference with 125I-IdUrd.
Resumo:
BACKGROUND AND OBJECTIVE: Protease inhibitors are highly bound to orosomucoid (ORM) (alpha1-acid glycoprotein), an acute-phase plasma protein encoded by 2 polymorphic genes, which may modulate their disposition. Our objective was to determine the influence of ORM concentration and phenotype on indinavir, lopinavir, and nelfinavir apparent clearance (CL(app)) and cellular accumulation. Efavirenz, mainly bound to albumin, was included as a control drug. METHODS: Plasma and cells samples were collected from 434 human immunodeficiency virus-infected patients. Total plasma and cellular drug concentrations and ORM concentrations and phenotypes were determined. RESULTS: Indinavir CL(app) was strongly influenced by ORM concentration (n = 36) (r2 = 0.47 [P = .00004]), particularly in the presence of ritonavir (r2 = 0.54 [P = .004]). Lopinavir CL(app) was weakly influenced by ORM concentration (n = 81) (r2 = 0.18 [P = .0001]). For both drugs, the ORM1 S variant concentration mainly explained this influence (r2 = 0.55 [P = .00004] and r2 = 0.23 [P = .0002], respectively). Indinavir CL(app) was significantly higher in F1F1 individuals than in F1S and SS patients (41.3, 23.4, and 10.3 L/h [P = .0004] without ritonavir and 21.1, 13.2, and 10.1 L/h [P = .05] with ritonavir, respectively). Lopinavir cellular exposure was not influenced by ORM abundance and phenotype. Finally, ORM concentration or phenotype did not influence nelfinavir (n = 153) or efavirenz (n = 198) pharmacokinetics. CONCLUSION: ORM concentration and phenotype modulate indinavir pharmacokinetics and, to a lesser extent, lopinavir pharmacokinetics but without influencing their cellular exposure. This confounding influence of ORM should be taken into account for appropriate interpretation of therapeutic drug monitoring results. Further studies are needed to investigate whether the measure of unbound drug plasma concentration gives more meaningful information than total drug concentration for indinavir and lopinavir.
Resumo:
Abstract Purpose: XG-102, a TAT-coupled dextrogyre peptide inhibiting the c-Jun N-terminal kinase, was shown efficient in the treatment of experimental uveitis. Preclinical studies are now performed to determine optimal XG-102 dose and route of administration in endotoxin-induced uveitis (EIU) in rats with the purpose of clinical study design. METHODS: EIU was induced in Lewis rats by lipopolysaccharides (LPS) injection. XG-102 was administered at the time of LPS challenge by intravenous (IV; 3.2, 35 or 355 μg/injection), intravitreal (IVT; 0.08, 0.2 or 2.2 μg/eye), or subconjunctival (SCJ; 0.2, 1.8 or 22 μg/eye) routes. Controls received either the vehicle (saline) or dexamethasone phosphate injections. Efficacy was assessed by clinical scoring, infiltrating cells count, and expression of inflammatory mediators [inducible nitric oxide synthase (iNOS), cytokine-induced neutrophil chemoattractant-1 (CINC-1)]. The effect of XG-102 on phosphorylation of c-Jun was evaluated by Western blot. RESULTS: XG-102 demonstrated a dose-dependent anti-inflammatory effect in EIU after IV and SCJ administrations. Respective doses of 35 and 1.8 μg were efficient as compared with the vehicle-injected controls, but only the highest doses, respectively 355 and 22 μg, were as efficient as dexamethasone phosphate. After IVT injections, the anti-inflammatory effect of XG-102 was clinically evaluated similar to the corticoid's effect with all the tested doses. Regardless of the administration route, the lowest efficient doses of XG-102 significantly decreased the ration of phospho c-Jun/total c-Jun, reduced cells infiltration in the treated eyes, and significantly downregulated iNOS and CINC-1 expression in the retina. CONCLUSION: These results confirm that XG-102 peptide has potential for treating intraocular inflammation. SCJ injection appears as a good compromise to provide a therapeutic effect while limiting side effects.
Resumo:
Immunity and hormonal responses in the reproductive tissues of postmenopausal women are poorly understood. Secretory leukocyte protease inhibitor (SLPI), a multifunctional antimicrobial protein expressed at mucosal surfaces, is thought to play a key role in infectious and inflammatory contexts. The aim of this study was to measure SLPI production along the female reproductive tract in postmenopausal women with and without hormonal treatment. We additionally quantified estrogen receptor alpha (ERα) and progesterone receptor A (PRA) in these tissues. Expression of SLPI was decreased in the vagina and ectocervix of women under hormonal treatment. Endocervical ERα mRNA expression was increased while this did not reach significance at the protein level. SLPI expression in the endometrium was not influenced by hormonal treatment. We observed attenuated ERα expression in the cervix and endometrium of hormonally treated women, whereas vaginal expression was increased. PRA expression was augmented in the cervix and endometrium and unchanged in the vagina. Taken together, our results indicate that hormonal responses and receptor expression are differentially regulated in vaginal tissue compared with the cervix and endometrium.