1000 resultados para p-branes
Resumo:
It was shown earlier that the monoterpene ketone, piperitenone (I) is one of the major metabolites of R-(+)-pulegone, a potent hepatotoxin, In the present studies, the metabolic disposition of piperitenone (I) was examined in rats. Piperitenone (I) was administered orally (400 mg/kg of the b. wt./day) to rats for 5 days, The following urinary metabolites were isolated and identified by various spectral analyses: p-cresol (VI), 6,7-dehydromenthofuran (III), p-mentha-1,3,5,8-tetraen-3-ol (IX), p-mentha-1,3, 5-friene-3, 8-diol (X), 5-hydroxypiperitenone (VIII), 7-hydroxypiperitenone (XI), 10-hydroxypiperitenone (XII), and 4-hydroxypiperitenone (VII). Incubation of piperitenone (I) with phenobarbital-induced rat liver microsomes in the presence of NADPH resulted in the formation of five metabolites which have been tentatively identified as metabolites III, VII, VIII, XI, XII, on the basis of gas chromatography retention time and gas chromatography-mass spectrometry analysis. Based on these results, a probable mechanism for the formation of p-cresol from piperitenone (I) via the intermediacy of metabolite III has been proposed.
Resumo:
Differently hydrated sodium p-nitrophenolate (NPNa) crystals were obtained while growing them from different solvents such as methanol and water. Thermal analysis and powder X-ray diffraction studies were carried out on these crystals. Kurtz powder SHG technique was used for qualitative assessment of their nonlinear optical (NLO) activity. From the detailed single-crystal X-ray diffraction studies it is established that NPNa has three different forms, of which only one is found to possess NLO activity. Additionally, a new NLO active crystal was also found to grow from aqueous solution. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Complexes of the formulation [(eta(6)-p-cymene)Ru(O-2-C6H4-CH=NC6H4-4-CH3)(L)](ClO4), where L is gamma-picoline, 4-vinylpyridine, 1-methylimidazole and 1-vinylimidazole have been prepared and characterised. The molecular structure of the vinylpyridine adduct has been determined by X-ray crystallography. The crystal belongs to the monoclinic space group P2(1) with the following cell dimensions for the C31H33CIN2O5Ru(M = 650.11): a = 10.890(2)Angstrom, b = 22.295(9)Angstrom, c = 12.930(2)Angstrom, beta = 109.30(2)degrees(3), V = 2964(l)Angstrom 3, Z = 4; D-c = 1.457g cm(-3), lambda(Mo-K alpha) = 0.7107 Angstrom; mu(Mo-K alpha)= 6.61 cm(-1); T = 293 K; R = 0.0359 (wR(2) = 0.0981) for 4819 reflections with I > 2 sigma(I). The structure shows the non-bonding nature of the double bond of the 4-vinylpyridine ligand in the complex in which the metal is bonded to the eta(6)-p-cymene, the N, O-bidentate chelating schiff-base and the unidentate N-donor pyridine ligands.
Resumo:
N,N'-Bis(ferrocenylmethylidene)-p-phenylenediamine 1 and N-(ferrocenylmethylidene) aniline 2 are readily synthesized by Schiff base condensation of appropriate units. Iodine (I-2), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), tetrachloro-1,4-benzoquinone (CA), tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) form charge transfer complexes with 1 and 2. IR spectroscopy suggests an increase in the amount of charge transferred from the ferrocenyl ring to the oxidant in the order, I-2 < CA < TCNQ < TCNE approximate to DDQ. EPR spectra of the oxidized binuclear complexes are indicative of localized species containing iron- and carbon-centered radicals. The Mossbauer spectrum of the iodine oxidized complex of 1 reveals the presence of both Fe(III) and Fe(II) centers. Variable temperature magnetic and Mossbauer studies show that the ratio of Fe(III)/Fe(II) centers varies as a function of temperature. The larger Fe(II)/Fe(III) ratio at lower temperatures is best explained by a retro charge transfer from the iodide to the iron(III) metal center. There is negligible solvent effect on the formation of the iodine oxidized charge transfer complex of 1. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
We report low-frequency 1/f-noise measurements of degenerately doped Si:P delta layers at 4.2 K. The noise was found to be over six orders of magnitude lower than that of bulk Si:P systems in the metallic regime and is one of the lowest values reported for doped semiconductors. The noise was nearly independent of magnetic field at low fields, indicating negligible contribution from universal conductance fluctuations. Instead, the interaction of electrons with very few active structural two-level systems may explain the observed noise magnitude.
Resumo:
p-Benzoquinone and its halogen substituted derivatives are known to have differing reactivities in the triplet excited state. While bromanil catalyzes the reduction of octaethylporphyrin most efficiently among the halogenated p-benzoquinones, the reaction does not take place in presence of the unsubstituted p-benzoquinone (T. Nakano and Y. Mori, Bull. Chem. Soc. Jpn., 67, 2627 (1994)). Understanding of such differences requires a detailed knowledge of the triplet state structures, normal mode compositions and excited state dynamics. In this paper, we apply a recently presented scheme (M. Puranik, S. Umapathy, J. G. Snijders, and J. Chandrasekhar, J. Chem, Phys., 115, 6106 (2001)) that combines parameters from experiment and computation in a wave packet dynamics simulation to the triplet states of p-benzoquinone and bromanil. The absorption and resonance Raman spectra of both the molecules have been simulated. The normal mode compositions and mode specific excited state displacements have been presented and compared. Time-dependent evolution of the absorption and Raman overlaps for all the observed modes has been discussed in detail. In p-benzoquinone, the initial dynamics is along the C=C stretching and C-H bending modes whereas in bromanil nearly equal displacements are observed along all the stretching coordinates.
Resumo:
Resonance Raman (RR) spectra are presented for p-nitroazobenzene dissolved in chloroform using 18 excitation Wavelengths, covering the region of (1)(n --> pi*) electronic transition. Raman intensities are observed for various totally symmetric fundamentals, namely, C-C, C-N, N=N, and N-O stretching vibrations, indicating that upon photoexcitation the excited-state evolution occurs along all of these vibrational coordinates. For a few fundamentals, interestingly, in p-nitroazobenzene, it is observed that the RR intensities decrease near the maxima of the resonant electronic (1)(n --> pi*) transition. This is attributed to the interference from preresonant scattering due to the strongly allowed (1)(pi --> pi*) electronic transition. The electronic absorption spectrum and the absolute Raman cross section for the nine Franck-Condon active fundamentals of p-nitroazobenzene have been successfully modeled using Heller's time-dependent formalism for Raman scattering. This employs harmonic description of the lowest energy (1)(n --> pi*) potential energy surface. The short-time isomerization dynamics is then examined from a priori knowledge of the ground-state normal mode descriptions of p-nitroazobenzene to convert the wave packet motion in dimensionless normal coordinates to internal coordinates. It is observed that within 20 fs after photoexcitation in p-nitroazobenzene, the N=N and C-N stretching vibrations undergo significant changes and the unsubstituted phenyl ring and the nitro stretching vibrations are also distorted considerably.
Resumo:
The quantum yield of I*((2)p(1/2)) production from CH3I photolysis at 236 nm in the gas phase has been measured as 0.69 +/- 0.03. The implication is that direct excitation to the (1)Q(1) excited state is significant at this wavelength. The dynamics of I* formation at other excitation energies covering the entire A-band of absorption of CH3I has been discussed in the light of this measurement.
Resumo:
Azophenol complexes of formulation [(η6-p-cymene)RuCl(Ln)] (1–6, n=1–6) were prepared by two synthetic methods involving either an oxygen insertion to the Ru---C bond in cycloruthenated precursors forming complexes 1 and 2 or from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] with azophenol ligands (HL3–HL6) in the presence of sodium carbonate in CH2Cl2. The molecular structure of the 1-(phenylazo)-2-naphthol complex has been determined by X-ray crystallography. The complex has a η6-p-cymene group, a chloride and a bidentate N,O-donor azophenol ligand. The complexes have been characterized from NMR spectral data. The catalytic activity of the complexes has been studied for the conversion of acetophenone to the corresponding alcohol in the presence of KOH and isopropanol. Complexes 4 and 6 having a methoxy group attached to the ortho-position of the phenylazo moiety and 2 with a methyl group in the meta-position of the phenolic moiety show high percentage conversion (>84%).
Resumo:
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H-2)(L)][BF4](2) (dppm = Ph2PCH2PPh2; L = P(OMe)(3), P(OEt)(3), PF((OPr)-Pr-i)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF4] (L = P(OMe)(3), P(OEt)(3), P((OPr)-Pr-i)(3)) using HBF4.Et2O. The cis-[(dppm)(2)Ru(H)(L)][BF4] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H-2 ligand in the dihydrogen complexes is labile, and the loss of H-2 was found to be reversible. The protonation reactions of the starting hydrides with trans PMe3 or PMe2Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dPPM)(2)Ru(BF4)Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF4], cis-[(dppm)(2)Ru-(H)(P(OMe)(3))][BF4], and cis-[(dppm)(2)Ru(H)(P((OPr)-Pr-i)(3))][BF4] complexes have been determined.
Resumo:
We analyze the dynamics of desorption of a polymer molecule which is pulled at one of its ends with force f, trying to desorb it. We assume a monomer to desorb when the pulling force on it exceeds a critical value f(c). We formulate an equation for the average position of the n-th monomer, which takes into account excluded-volume interaction through the blob-picture of a polymer under external constraints. The approach leads to a diffusion equation with a p-Laplacian for the propagation of the stretching along the chain. This has to be solved subject to a moving boundary condition. Interestingly, within this approach, the problem can be solved exactly in the trumpet, stem-flower and stem regimes. In the trumpet regime, we get tau = tau(0)n(d)(2), where n(d) is the number of monomers that have desorbed at the time tau. tau(0) is known only numerically, but for f close to f(c), it is found to be tau(0) similar to f(c)/(f(2/3) - f(c)(2/3)) If one used simple Rouse dynamics, this result would change to tau similar to f(c)n(d)(2)/(f - f(c)). In the other regimes too, one can find exact solution, and interestingly, in all regimes tau similar to n(d)(2). Copyright (C) EPLA, 2011
Resumo:
The title compound, C(14)H(21)Br(2)N(2)(+)center dot C(7)H(7)O(3)S, features a salt of protonated bromhexine, a pharmaceutical used in the treatment of respiratory disorders, and the p-toluenesulfonate anion. The crystal packing is stabilized by intermolecular N-H center dot center dot center dot O, N-H center dot center dot center dot Br and C-H center dot center dot center dot O hydrogen bonds.
Resumo:
The potential energy surfaces of both neutral and dianionic SnC(2)P(2)R(2) (R=H, tBu) ring systems have been explored at the B3PW91/LANL2DZ (Sn) and 6-311 + G* (other atoms) level. In the neutral isomers the global minimum is a nido structure in which a 1,2-diphosphocyclobutadiene ring (1,2-DPCB) is capped by the Sn. Interestingly, the structure established by Xray diffraction analysis, for R=tBu, is a 1,3-DPCB ring capped by Sn and it is 2.4 kcal mol(-1) higher in energy than the 1,2-DPCB ring isomer. This is possibly related to the kinetic stability of the 1,3-DPCB ring, which might originate from the synthetic precursor ZrCp(2)tBu(2)C(2)P(2). In the case of the dianionic isomers we observe only a 6 pi-electron aromatic structure as the global minimum, similarly to the cases of our previously reported results with other types of heterodiphospholes.([1,4,19]) The existence of large numbers of cluster-type isomers in neutral and 6 pi-planar structures in the dianions SnC(2)P(2)R(2)(2-) (R=H, tBu) is due to 3D aromaticity in neutral clusters and to 2D pi aromaticity of the dianionic rings. Relative energies of positional isomers mainly depend on: 1) the valency and coordination number of the Sn centre, 2) individual bond strengths, and 3) the steric effect of tBu groups. A comparison of neutral stannadiphospholes with other structurally related C(5)H(5)(+) analogues indicates that Sn might be a better isolobal analogue to P(+) than to BH or CH(+). The variation in global minima in these C(5)H(5)(+) analogues is due to characteristic features such as 1) the different valencies of C, B, P and Sn, 2) the electron deficiency of B, 3) weaker p pi-p pi bonding by P and Sn atoms, and 4) the tendency of electropositive elements to donate electrons to nido clusters. Unlike the C5H5+ systems, all C(5)H(5)(-) analogues have 6 pi-planar aromatic structures as global minima. The differences in the relative ordering of the positional isomers and ligating properties are significant and depend on 1) the nature of the pi orbitals involved, and 2) effective overlap of orbitals.
Resumo:
The focus of this work is the evaluation and analysis of the state of dispersion of functionalized multiwall carbon nanotubes (CNTs), within different morphologies formed, in a model LCST blend (poly[(alpha-methylstyrene)-co-(acrylonitrile)]/poly(methyl-methacryla te), P alpha MSAN/PMMA). Blend compositions that are expected to yield droplet-matrix (85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA, wt/wt) and co-continuous morphologies (60/40 P alpha MSAN/PMMA, wt/wt) upon phase separation have been combined with two types of CNTs; carboxylic acid functionalized (CNTCOOH) and polyethylene modified (CNTPE) up to 2 wt%. Thermally induced phase separation in the blends has been studied in-situ by rheology and dielectric (conductivity) spectroscopy in terms of morphological evolution and CNT percolation. The state of dispersion of CNTs has been evaluated by transmission electron microscopy. The experimental results indicate that the final blend morphology and the surface functionalization of CNT are the main factors that govern percolation. In presence of either of the CNTs, 60/40 P alpha MSAN/PMMA blends yield a droplet-matrix morphology rather than co-continuous and do not show any percolation. On the other hand, both 85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA blends containing CNTPEs show percolation in the rheological and electrical properties. Interestingly, the conductivity spectroscopy measurements demonstrate that the 15/85 P alpha MSAN/PMMA blends with CNTPEs that show insulating properties at room temperature for the miscible blends reveal highly conducting properties in the phase separated blends (melt state) as a result of phase separation. By quenching this morphology, the conductivity can be retained in the blends even in the solid state. (C) 2011 Elsevier Ltd. All rights reserved.