990 resultados para oxidation potential
Exploring the potential of functionally graded materials concept for the development of fiber cement
Resumo:
In this study we establish the concept of functionally graded fiber cement. We discuss the use of statistical mixture designs to choose formulations and present ideas for the production of functionally graded fiber cement components for Hatschek machines. The feasibility of producing functionally graded fiber cement by grading PVA fiber content has been experimentally evaluated. Thermogravimetric analysis (TG) was employed to assess fiber distribution profiles and four-point bending tests were applied to evaluate the mechanical performance of both conventional and graded composites. The results show that grading PVA fiber content is an effective way to produce functionally graded fiber cement, which allows for a reduction of the total fiber volume without a significant reduction on modulus of rupture of composite. TG tests were found adequate to assess the fiber content at different points in functionally graded fiber cements. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes ail alternative configuration to conventional reverse osmosis (RO) desalination systems by incorporating the use of gravitational potential energy. The proposal suggests a model that can be viewed as the energy station of a RO desalination plant. Conventionally, RO plants use a high-pressure pump, powered by electricity or fossil fuel. The function of the pump is to send a flux of saline water to a group of semi-permeable membrane modules, capable of ""filtering"" the dissolved salts. In this proposed model, we intend to achieve a flux at the inlet of the membrane modules with a pressure high enough for the desalination process, without using, either electricity or fossil fuels. To do this we divised a hybrid system that uses both gravitational potential energy and wind energy. The technical viability of the alternative was theoretically proven by deductions based on physics and mathematics.
Resumo:
Oxide dispersion strengthened ferritic-martensitic steels are potential candidates for applications in future fusion power plants. High creep resistance, good oxidation resistance, reduced neutron activation and microstructural long-term stability at temperatures of about 650-700 degrees C are required in this context. In order to evaluate its thermal stability in the ferritic phase field, samples of the reduced activation ferritic-martensitic 9%Cr-ODS-Eurofer steel were cold rolled to 50% and 80% reductions and further annealed in vacuum from 300 to 800 degrees C for 1 h. The characterization in the annealed state was performed by scanning electron microscopy in the backscattered electron mode, high-resolution electron backscatter diffraction and transmission electron microscopy. Results show that the fine dispersion of Y-based particles (about 10 nm in size) is effective to prevent recrystallization. The low recrystallized volume fraction (<0.1) is associated to the nuclei found at prior grain boundaries and around large M(23)C(6) particles. Static recovery was found to be the predominant softening mechanism of this steel in the investigated temperature range. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work aims to study the adsorption of phenol on activated carbons (ACs) and the consecutive in situ regeneration of carbon by Fenton oxidation. Two different operations have been carried Out: (1) a batch procedure in order to investigate the influence of Fe(2+) and H(2)O(2) concentrations; (2) continuous fixed bed adsorption, followed by a batch circulation of the Fenton`s reagent through the saturated AC bed. to examine the efficiency of the real process. Two different activated carbons have been also studied: a both micro- and mesoporous AC (L27) and an only microporous One (S23). In the batch reactor the best conditions found for pollutant mineralization in the homogeneous Fenton system are not the best For AC regeneration: a continuous reduction of adsorption capacity of L27 is observed after 3 oxidations, due to the decrease of both AC weight and surface area. Higher concentration of Fe(2+) and lower concentration of H(2)O(2) (2 times the stoichiometry) lead to a 50% recovery of the initial adsorption capacity during at least four consecutive cycles for L27, while about 20% or less for S23. In the consecutive continuous adsorption/batch Fenton oxidation process, the regeneration efficiency reaches 30-40% for L27 after two cycles whatever the feed concentration and less than 10% for S23. A photo-Fenton test performed on L27 shows almost complete mineralization (contrary to ""dark"" Fenton) and further improves recovery of AC adsorption capacity although not complete (56% after two cycles).
Resumo:
Oxidation processes are used in wastewater treatment when conventional processes are not effective due to the presence of recalcitrant organic contaminants, like phenol. However, the presence of ionic compounds associated with organic pollutants may retard the oxidation. In this work the transport of species contained in an aqueous solution of phenol containing sodium chloride was evaluated in an electrodialysis (ED) system. An experimental study was carried out in which the influence of the process variables on the phenol loss and sodium chloride removal was investigated. Experiments were also performed without current, in order to determine the phenol transfer due to diffusion. The phenol and salt concentration variations in the ED compartments were measured over time, using dedicated procedures and an experimental design to determine the global characteristic parameters. A phenomenological approach was used to relate the phenol, salt and water fluxes with the driving forces (concentration and electric potential gradients). Under ED conditions, two contributions were pointed out for the phenol transport, i.e. diffusion and convection, this latter coming from the water flux due to electroosmosis related to the migration of salts. The fitting of the parameters of the transport equations resulted in good agreement with the experimental results over the range of conditions investigated. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigated the inhibitory potential of aqueous extracts of bark and leaves of Esenbeckia leiocarpa Engl. on lettuce germination and early seedling growth. We compared the effects of four concentrations (100, 75, 50 and 25%) of each extract to water and polyethylene glycol (PEG 6000) solution controls for four replicates of 50 seeds tor germination and four replicates of ten seedlings for seedling growth. The inhibitory effects of E. leiocarpa extracts on the percentage of germination and on the germination speed seemed to be inure than simply an osmotic effect, except for the percentage of seeds germinated in bark extracts. When compared to water control. both bark and leaf extracts delayed germination, and leaf extracts also affected the percentage of germinated seeds. Leaf ex tracts of all concentrations strongly inhibited the development of seedlings and caused them some degree of abnormality; bark extracts also caused abnormalities and reduced seedling growth. Root development was more sensitive to the extracts than hypocotyl growth. The negative effects of leaf extracts on germination and seedling growth were more pronounced than those of bark extracts, and the overall effects of both extracts were positively correlated with extract concentrations.
Resumo:
The sustainability of current harvest practices for high-value Meliaceae can be assessed by quantifying logging intensity and projecting growth and survival by post-logging populations over anticipated intervals between harvests. From 100%-area inventories of big-leaf mahogany (Swietenia macrophylla) covering 204 ha or more at eight logged and unlogged forest sites across southern Brazilian Amazonia, we report generally higher landscape-scale densities and smaller population-level mean diameters in eastern forests compared to western forests, where most commercial stocks survive. Density of trees >= 20 cm diameter varied by two orders of magnitude and peaked at 1.17 ha(-1). Size class frequency distributions appeared unimodal at two high-density sites, but were essentially arnodal or flat elsewhere; diameter increment patterns indicate that populations were multi- or all-aged. At two high-density sites, conventional logging removed 93-95% of commercial trees (>= 45 cm diameter at the time of logging), illegally eliminated 31-47% of sub-merchantable trees, and targeted trees as small as 20 cm diameter. Projected recovery by commercial stems during 30 years after conventional logging represented 9.9-37.5% of initial densities and was highly dependent on initial logging intensity and size class frequency distributions of commercial trees. We simulated post-logging recovery over the same period at all sites according to the 2003 regulatory framework for mahogany in Brazil, which raised the minimum diameter cutting limit to 60 cm and requires retention during the first harvest of 20% of commercial-sized trees. Recovery during 30 years ranged from approximately 0 to 31% over 20% retention densities at seven of eight sites. At only one site where sub-merchantable trees dominated the population did the simulated density of harvestable stems after 30 years exceed initial commercial densities. These results indicate that 80% harvest intensity will not be sustainable over multiple cutting cycles for most populations without silvicultural interventions ensuring establishment and long-term growth of artificial regeneration to augment depleted natural stocks, including repeated tending of outplanted seedlings. Without improved harvest protocols for mahogany in Brazil as explored in this paper, future commercial supplies of this species as well as other high-value tropical timbers are endangered. Rapid changes in the timber industry and land-use in the Amazon are also significant challenges to sustainable management of mahogany. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Torrefaction is a mild pyrolysis process (usually up to 300 degrees C) that changes the chemical and physical properties of biomass. This process is a possible pre-treatment prior to further processes (transport, grinding, combustion, gasification, etc) to generate energy or biofuels. In this study, three eucalyptus wood species and bark were subjected to different torrefaction conditions to determine the alterations in their structural and energy properties. The most severe treatment (280 degrees C, 5 h) causes mass losses of more than 35%, with severe damage to anatomical structure, and an increase of about 27% in the specific energy content. Bark is more sensitive to heat than wood. Energy yields are always higher than mass yields, thereby demonstrating the benefits of torrefaction in concentrating biomass energy. The overall mass loss is proposed as a relevant parameter to synthesize the effect of torrefaction conditions (temperature and duration). Accordingly, all results are summarised by analytical expressions able to predict the energy properties as a function of the overall mass loss. These expressions are intended to be used in any optimization procedure, from production in the field to the final use. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Predicting the potential geographical distribution of a species is particularly important for pests with strong invasive abilities. Tetranychus evansi Baker & Pritchard, possibly native to South America, is a spider mite pest of solanaceous crops. This mite is considered an invasive species in Africa and Europe. A CLIMEX model was developed to predict its global distribution. The model results fitted the known records of T. evansi except for some records in dry locations. Dryness as well as excess moisture stresses play important roles in limiting the spread of the mite in the tropics. In North America and Eurasia its potential distribution appears to be essentially limited by cold stress. Detailed potential distribution maps are provided for T. evansi in the Mediterranean Basin and in Japan. These two regions correspond to climatic borders for the species. Mite establishment in these areas can be explained by their relatively mild winters. The Mediterranean region is also the main area where tomato is grown in open fields in Europe and where the pest represents a threat. According to the model, the whole Mediterranean region has the potential to be extensively colonized by the mite. Wide expansion of the mite to new areas in Africa is also predicted. Agricultural issues highlighted by the modelled distribution of the pest are discussed.
Resumo:
Rhodacaridae are cosmopolitan mites mentioned as predators, although nothing is known about their potential as biological control agents. One of the objectives of the work reported in this paper was to evaluate the potential of Protogamasellopsis posnaniensis (Acari: Rhodacaridae) as predator of representative species of insects of the families Sciaridae (Bradysia matogrossensis (Lane)) and Thripidae (Frankliniella occidentalis (Pergande)), of mites of the family Acaridae (Tyrophagus putrescentiae (Schrank) and Rhizoglyphus echinopus (Fumouze & Robin) and of nematodes of the family Rhabditidae (Protorhabditis sp.). Another objective was to determine the biological cycle of P. posnaniensis when fed the prey on which it performed best in the preceding predation test. The study was conducted in a laboratory where the experimental units were maintained at 25 +/- 1 degrees C, 97 +/- 3% RH and in the dark. Although the predator was able to kill all prey species considered in this study, the most favorable prey were T. putrescentiae, F. occidentalis and Protorhabditis sp. Survivorship of the predator in predation tests was always 98% or higher. Life table biological parameters when the predator was fed T. putrescentiae were: R(o) = 109.29; T = 19.06 days; lambda = 1.28 e r(m) = 0.32 female/female/day. Despite preying upon larvae of B. matogrossensis, eggs of the former can also be killed by the latter. The results indicated that A posnaniensis is a promising biological control agent, deserving additional studies on its possible use for the control of soil pests. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Hydrological models featuring root water uptake usually do not include compensation mechanisms such that reductions in uptake from dry layers are compensated by an increase in uptake from wetter layers. We developed a physically based root water uptake model with an implicit compensation mechanism. Based on an expression for the matric flux potential (M) as a function of the distance to the root, and assuming a depth-independent value of M at the root surface, uptake per layer is shown to be a function of layer bulk M, root surface M, and a weighting factor that depends on root length density and root radius. Actual transpiration can be calculated from the sum of layer uptake rates. The proposed reduction function (PRF) was built into the SWAP model, and predictions were compared to those made with the Feddes reduction function (FRF). Simulation results were tested against data from Canada (continuous spring wheat [(Triticum aestivum L.]) and Germany (spring wheat, winter barley [Hordeum vulgare L.], sugarbeet [Beta vulgaris L.], winter wheat rotation). For the Canadian data, the root mean square error of prediction (RMSEP) for water content in the upper soil layers was very similar for FRF and PRF; for the deeper layers, RMSEP was smaller for PRF. For the German data, RMSEP was lower for PRF in the upper layers and was similar for both models in the deeper layers. In conclusion, but dependent on the properties of the data sets available for testing,the incorporation of the new reduction function into SWAP was successful, providing new capabilities for simulating compensated root water uptake without increasing the number of input parameters or degrading model performance.
Resumo:
Crop rotation can play a valuable role in managing plant parasitic nematodes, depending on the availability of profitable non-host or poor host crops. Alternatively, non-host cover crops or green manures can be used in succession to summer cash Crops for this Purpose. The aim of the current study was to evaluate, under greenhouse conditions, the host status of commercial hybrids and cultivars of grain and silage sorghum (Sorghum bicolor) for Meloidogyne javanica, and to assess the effect of sorghum on nematode population in comparison with pearl millet (poor host for M. javanica), showy crotalaria and sunn hemp (both non-hosts). Based on two experiments, it was stated that, as a rule, grain sorghum is a poor host for M. javanica, but silage sorghum is a good host. Silage sorghum `BRS 601` was an exception. In other experiments, grain sorghum, pearl millet (Pennisetum glaucum `BN 2`), showy crotalaria (Crotolaria spectabilis `Comum`) and sunn hemp (C. juncea `IAC-KR-1`) reduced M. javanica population level, while silage sorghum increased the nematode density.
Resumo:
Maize (Zea mays L.) is a very important cereal to world-wide economy which is also true for Brazil, particularly in the South region. Grain yield and plant height have been chosen as important criteria by breeders and farmers from Santa Catarina State (SC), Brazil. The objective of this work was to estimate genetic-statistic parameters associated with genetic gain for grain yield and plant height, in the first cycle of convergent-divergent half-sib selection in a maize population (MPA1) cultivated by farmers within the municipality of Anchieta (SC). Three experiments were carried out in different small farms at Anchieta using low external agronomic inputs; each experiment represented independent samples of half-sib families, which were evaluated in randomized complete blocks with three replications per location. Significant differences among half-sib families were observed for both variables in all experiments. The expected responses to truncated selection of the 25% better families in each experiment were 5.1, 5.8 and 5.2% for reducing plant height and 3.9, 5.7 and 5.0% for increasing grain yield, respectively. The magnitudes of genetic-statistic parameters estimated evidenced that the composite population MPA1 exhibits enough genetic variability to be used in cyclical process of recurrent selection. There were evidences that the genetic structure of the base population MPA1, as indicated by its genetic variability, may lead to expressive changes in the traits under selection, even under low selection pressure.
Resumo:
Understanding resource capture can help design appropriate species combinations, planting designs and management. Leaf area index (LAI) and its longevity are the most important factors defining dry matter production and thus growth and productivity. The ecophysiological modifications and yield of rubber (Hevea spp.) in an agroforestry system (AFS) with beans (Phaseolus vulgaris L.) were studied. The experiment was established in Southeast-Brazil, with three rubber cultivars: IAN 3087, RRIM 600 and RRIM 527. The AFS comprised double rows of rubber trees along with beans sown in autumn and winter seasons in 1999. There was about 50% higher rubber yield per tree in the AFS than the rubber monoculture. Trees within the AFS responded to higher solar radiation availability with higher LAI and total foliage area, allowing its greater interception. All three cultivars had higher LAI in the AFS than monoculture, reaching maximum values in the AFS between April and May of 3.17 for RRIM 527; 2.83 for RRIM 600 and 2.28 for IAN 3087. The maximum LAI values for monocrop rubber trees were: 2.65, 2.62 and 1.99, respectively, for each cultivar. Rubber production and LAI were positively correlated in both the AFS and monoculture but leaf fall of rubber trees in the AFS was delayed and total phytomass was larger. It is suggested that trees in the AFS were under exploited and could yield more without compromising their life cycle if the tapping system was intensified. This shows how knowledge of LAI can be used to manage tapping intensity in the field, leading to higher rubber yield.
Resumo:
Agricultural reuse of treated sewage effluent (TSE) is an environmental and economic practice; however, little is known about its effects on the characteristics and microbial function in tropical soils. The effect of surplus irrigation of a pasture with TSE, in a period of 18 months, was investigated, considering the effect of 0% surplus irrigation with TSE as a control. In addition, the experiment consisted of three surplus treatments (25%, 50%, and 100% excess) and a nonirrigated pasture area (SE) to compare the soil microbial community level physiological profiles, using the Biolog method. The TSE application increased the average substrate consumption of the soil microbial community, based on the kinetic parameters of the average well color development curve fitting. There were no significant differences between the levels of surplus irrigation treatments. Surplus TSE pasture irrigation caused minor increases in the physiological status of the soil microbial community but no detectable damage to the pasture or soil.