985 resultados para organic fertilizer addition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unpredictable changes in the environment stimulate the avian hypothalamo-pituitary-adrenal axis to produce corticosterone, which induces behavioural and metabolic changes that enhance survival in the face of adverse environmental conditions. In addition to profound environmental perturbations, such as severe weather conditions and unpredictable food shortages, many Arctic-breeding birds are also confronted with chronic exposure to persistent organic pollutants (POPs), some of which are known to disrupt endocrine processes. This study investigated the adrenocortical function of a top predator in the Arctic marine environment, the glaucous gull (Larus hyperboreus). High concentrations of organochlo-rines, brominated flame retardants and metabolically-derived products in blood plasma of incubating glaucous gulls were associated with high baseline corticosterone concentrations in both sexes and a reduced stress response in males. Contaminant-related changes in corticosterone concentration occurred over and above differences in body condition and seasonal variation. Chronically high corticosterone concentrations and/or a compromised adrenocortical response to stress can have negative effects on the health of an individual. The results of the present study suggest that exposure to POPs may increase the vulnerability of glaucous gulls to environmental stressors and thus could potentially compromise their ability to adapt to the rapidly changing environmental conditions associated with climate change that are currently seen in the Arctic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In pursuance of previous studies water samples were taken in the Atlantic and Mediterranean during the 12th, 14th and 15th cruises of RV Mikhail Lomonosov in 1962-1964 to determine total and particulate organic carbon and permanganate oxidizability. Preliminary processing of the water samples was carried out in the normal manner in the on-board laboratory immediately after they had been taken: destruction of bicarbonates and carbonates by precise addition of acid (by alkalinity) and evaporation to dryness at 50-60°C. It is quite probable that the corresponding volatile fraction of organic matter is lost under these conditions. In discussion it was demonstrated that it may now be assumed that the carbon of the volatile fraction averages approximately 15% of total carbon, i.e., 15% of the sum of organic carbon of the volatile and nonvolatile fractions. Oxidizability was determined in all samples in the on-board laboratory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification may stimulate primary production through increased availability of inorganic carbon in the photic zone, which may in turn change the biogenic flux of dissolved organic carbon (DOC) and the growth potential of heterotrophic bacteria. To investigate the effects of ocean acidification on marine bacterial assemblages, a two-by-three factorial mescosom experiment was conducted using surface sea water from the East Greenland Current in Fram Strait. Pyrosequencing of the V1-V2 region of bacterial 16S ribosomal RNA genes was used to investigate differences in the endpoint (Day 9) composition of bacterial assemblages in mineral nutrient-replete mesocosms amended with glucose (0 µm, 5.3 µm and 15.9 µm) under ambient (250 µatm) or acidified (400 µatm) partial pressures of CO2 (pCO2). All mesocosms showed low richness and diversity by Chao1 estimator and Shannon index, respectively, with general dominance by Gammaproteobacteria and Flavobacteria. Nonmetric multidimensional scaling analysis and two-way analysis of variance of the Jaccard dissimilarity matrix (97% similarity cut-off) demonstrated that the significant community shift between 0 µm and 15.9 µm glucose addition at 250 µatm pCO2 was eliminated at 400 µatm pCO2. These results suggest that the response potential of marine bacteria to DOC input may be altered under acidified conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims The high metal bioavailability and the poor conditions of mine soils yield a low plant biomass, limiting the application of phytoremediation techniques. A greenhouse experiment was performed to evaluate the effects of organic amendments on metal stabilization and the potential of Brassica juncea L. for phytostabilization in mine soils. Methods Plants were grown in pots filled with soils collected from two mine sites located in Central Spain mixed with 0, 30 and 60 tha?1 of pine bark compost and horse- and sheep-manure compost. Plant biomass and metal concentrations in roots and shoots were measured. Metal bioavailability was assessed using a rhizosphere-based method (rhizo), which consists of a mixture of low-molecular-weight organic acids to simulate root exudates. Results Manure reduced metal concentrations in shoots (10?50 % reduction of Cu and 40?80 % of Zn in comparison with non-amended soils), bioconcentration factor (10?50 % of Cu and 40?80 % of Zn) and metal bioavailability in soil (40?50 % of Cu and 10?30 % of Zn) due to the high pH and the contribution of organic matter. Manure improved soil fertility and was also able to increase plant biomass (5?20 times in shoots and 3?30 times in roots), which resulted in a greater amount of metals removed from soil and accumulated in roots (increase of 2?7 times of Cu and Zn). Plants grown in pine bark treatments and in non-amended soils showed a limited biomass and high metal concentrations in shoots. Conclusions The addition of manure could be effective for the stabilization of metals and for enhancing the phytostabilization ability of B. juncea in mine soils. In this study, this species resulted to be a potential candidate for phytostabilization in combination with manure, differing from previous results, in which B. juncea had been recognized as a phytoextraction plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El óxido nitroso (N2O) es un potente gas de efecto invernadero (GHG) proveniente mayoritariamente de la fertilización nitrogenada de los suelos agrícolas. Identificar estrategias de manejo de la fertilización que reduzcan estas emisiones sin suponer un descenso de los rendimientos es vital tanto a nivel económico como medioambiental. Con ese propósito, en esta Tesis se han evaluado: (i) estrategias de manejo directo de la fertilización (inhibidores de la nitrificación/ureasa); y (ii) interacciones de los fertilizantes con (1) el manejo del agua, (2) residuos de cosecha y (3) diferentes especies de plantas. Para conseguirlo se llevaron a cabo meta-análisis, incubaciones de laboratorio, ensayos en invernadero y experimentos de campo. Los inhibidores de la nitrificación y de la actividad ureasa se proponen habitualmente como medidas para reducir las pérdidas de nitrógeno (N), por lo que su aplicación estaría asociada al uso eficiente del N por parte de los cultivos (NUE). Sin embargo, su efecto sobre los rendimientos es variable. Con el objetivo de evaluar en una primera fase su efectividad para incrementar el NUE y la productividad de los cultivos, se llevó a cabo un meta-análisis. Los inhibidores de la nitrificación dicyandiamide (DCD) y 3,4-dimetilepyrazol phosphate (DMPP) y el inhibidor de la ureasa N-(n-butyl) thiophosphoric triamide (NBPT) fueron seleccionados para el análisis ya que generalmente son considerados las mejores opciones disponibles comercialmente. Nuestros resultados mostraron que su uso puede ser recomendado con el fin de incrementar tanto el rendimiento del cultivo como el NUE (incremento medio del 7.5% y 12.9%, respectivamente). Sin embargo, se observó que su efectividad depende en gran medida de los factores medioambientales y de manejo de los estudios evaluados. Una mayor respuesta fue encontrada en suelos de textura gruesa, sistemas irrigados y/o en cultivos que reciben altas tasas de fertilizante nitrogenado. En suelos alcalinos (pH ≥ 8), el inhibidor de la ureasa NBPT produjo el mayor efecto. Dado que su uso representa un coste adicional para los agricultores, entender las mejores prácticas que permitan maximizar su efectividad es necesario para posteriormente realizar comparaciones efectivas con otras prácticas que incrementen la productividad de los cultivos y el NUE. En base a los resultados del meta-análisis, se seleccionó el NBPT como un inhibidor con gran potencial. Inicialmente desarrollado para reducir la volatilización de amoniaco (NH3), en los últimos años algunos investigadores han demostrado en estudios de campo un efecto mitigador de este inhibidor sobre las pérdidas de N2O provenientes de suelos fertilizados bajo condiciones de baja humedad del suelo. Dada la alta variabilidad de los experimentos de campo, donde la humedad del suelo cambia rápidamente, ha sido imposible entender mecanísticamente el potencial de los inhibidores de la ureasa (UIs) para reducir emisiones de N2O y su dependencia con respecto al porcentaje de poros llenos de agua del suelo (WFPS). Por lo tanto se realizó una incubación en laboratorio con el propósito de evaluar cuál es el principal mecanismo biótico tras las emisiones de N2O cuando se aplican UIs bajo diferentes condiciones de humedad del suelo (40, 60 y 80% WFPS), y para analizar hasta qué punto el WFPS regula el efecto del inhibidor sobre las emisiones de N2O. Un segundo UI (i.e. PPDA) fue utilizado para comparar el efecto del NBPT con el de otro inhibidor de la ureasa disponible comercialmente; esto nos permitió comprobar si el efecto de NBPT es específico de ese inhibidor o no. Las emisiones de N2O al 40% WFPS fueron despreciables, siendo significativamente más bajas que las de todos los tratamientos fertilizantes al 60 y 80% WFPS. Comparado con la urea sin inhibidor, NBPT+U redujo las emisiones de N2O al 60% WFPS pero no tuvo efecto al 80% WFPS. La aplicación de PPDA incrementó significativamente las emisiones con respecto a la urea al 80% WFPS mientras que no se encontró un efecto significativo al 60% WFPS. Al 80% WFPS la desnitrificación fue la principal fuente de las emisiones de N2O en todos los tratamientos mientras que al 60% tanto la nitrificación como la desnitrificación tuvieron un papel relevante. Estos resultados muestran que un correcto manejo del NBPT puede suponer una estrategia efectiva para mitigar las emisiones de N2O. Con el objetivo de trasladar nuestros resultados de los estudios previos a condiciones de campo reales, se desarrolló un experimento en el que se evaluó la efectividad del NBPT para reducir pérdidas de N y aumentar la productividad durante un cultivo de cebada (Hordeum vulgare L.) en secano Mediterráneo. Se determinó el rendimiento del cultivo, las concentraciones de N mineral del suelo, el carbono orgánico disuelto (DOC), el potencial de desnitrificación, y los flujos de NH3, N2O y óxido nítrico (NO). La adición del inhibidor redujo las emisiones de NH3 durante los 30 días posteriores a la aplicación de urea en un 58% y las emisiones netas de N2O y NO durante los 95 días posteriores a la aplicación de urea en un 86 y 88%, respectivamente. El uso de NBPT también incrementó el rendimiento en grano en un 5% y el consumo de N en un 6%, aunque ninguno de estos incrementos fue estadísticamente significativo. Bajo las condiciones experimentales dadas, estos resultados demuestran el potencial del inhibidor de la ureasa NBPT para mitigar las emisiones de NH3, N2O y NO provenientes de suelos arables fertilizados con urea, mediante la ralentización de la hidrólisis de la urea y posterior liberación de menores concentraciones de NH4 + a la capa superior del suelo. El riego por goteo combinado con la aplicación dividida de fertilizante nitrogenado disuelto en el agua de riego (i.e. fertirriego por goteo) se considera normalmente una práctica eficiente para el uso del agua y de los nutrientes. Algunos de los principales factores (WFPS, NH4 + y NO3 -) que regulan las emisiones de GHGs (i.e. N2O, CO2 y CH4) y NO pueden ser fácilmente manipulados por medio del fertirriego por goteo sin que se generen disminuciones del rendimiento. Con ese propósito se evaluaron opciones de manejo para reducir estas emisiones en un experimento de campo durante un cultivo de melón (Cucumis melo L.). Los tratamientos incluyeron distintas frecuencias de riego (semanal/diario) y tipos de fertilizantes nitrogenados (urea/nitrato cálcico) aplicados por fertirriego. Fertirrigar con urea en lugar de nitrato cálcico aumentó las emisiones de N2O y NO por un factor de 2.4 y 2.9, respectivamente (P < 0.005). El riego diario redujo las emisiones de NO un 42% (P < 0.005) pero aumentó las emisiones de CO2 un 21% (P < 0.05) comparado con el riego semanal. Analizando el Poder de Calentamiento global en base al rendimiento así como los factores de emisión del NO, concluimos que el fertirriego semanal con un fertilizante de tipo nítrico es la mejor opción para combinar productividad agronómica con sostenibilidad medioambiental en este tipo de agroecosistemas. Los suelos agrícolas en las áreas semiáridas Mediterráneas se caracterizan por su bajo contenido en materia orgánica y bajos niveles de fertilidad. La aplicación de residuos de cosecha y/o abonos es una alternativa sostenible y eficiente desde el punto de vista económico para superar este problema. Sin embargo, estas prácticas podrían inducir cambios importantes en las emisiones de N2O de estos agroecosistemas, con impactos adicionales en las emisiones de CO2. En este contexto se llevó a cabo un experimento de campo durante un cultivo de cebada (Hordeum vulgare L.) bajo condiciones Mediterráneas para evaluar el efecto de combinar residuos de cosecha de maíz con distintos inputs de fertilizantes nitrogenados (purín de cerdo y/o urea) en estas emisiones. La incorporación de rastrojo de maíz incrementó las emisiones de N2O durante el periodo experimental un 105%. Sin embargo, las emisiones de NO se redujeron significativamente en las parcelas enmendadas con rastrojo. La sustitución parcial de urea por purín de cerdo redujo las emisiones netas de N2O un 46 y 39%, con y sin incorporación de residuo de cosecha respectivamente. Las emisiones netas de NO se redujeron un 38 y un 17% para estos mismos tratamientos. El ratio molar DOC:NO3 - demostró predecir consistentemente las emisiones de N2O y NO. El efecto principal de la interacción entre el fertilizante nitrogenado y el rastrojo de maíz se dio a los 4-6 meses de su aplicación, generando un aumento del N2O y una disminución del NO. La sustitución de urea por purín de cerdo puede considerarse una buena estrategia de manejo dado que el uso de este residuo orgánico redujo las emisiones de óxidos de N. Los pastos de todo el mundo proveen numerosos servicios ecosistémicos pero también suponen una importante fuente de emisión de N2O, especialmente en respuesta a la deposición de N proveniente del ganado mientras pasta. Para explorar el papel de las plantas como mediadoras de estas emisiones, se analizó si las emisiones de N2O dependen de la riqueza en especies herbáceas y/o de la composición específica de especies, en ausencia y presencia de una deposición de orina. Las hipótesis fueron: 1) las emisiones de N2O tienen una relación negativa con la productividad de las plantas; 2) mezclas de cuatro especies generan menores emisiones que monocultivos (dado que su productividad será mayor); 3) las emisiones son menores en combinaciones de especies con distinta morfología radicular y alta biomasa de raíz; y 4) la identidad de las especies clave para reducir el N2O depende de si hay orina o no. Se establecieron monocultivos y mezclas de dos y cuatro especies comunes en pastos con rasgos funcionales divergentes: Lolium perenne L. (Lp), Festuca arundinacea Schreb. (Fa), Phleum pratense L. (Php) y Poa trivialis L. (Pt), y se cuantificaron las emisiones de N2O durante 42 días. No se encontró relación entre la riqueza en especies y las emisiones de N2O. Sin embargo, estas emisiones fueron significativamente menores en ciertas combinaciones de especies. En ausencia de orina, las comunidades de plantas Fa+Php actuaron como un sumidero de N2O, mientras que los monocultivos de estas especies constituyeron una fuente de N2O. Con aplicación de orina la comunidad Lp+Pt redujo (P < 0.001) las emisiones de N2O un 44% comparado con los monocultivos de Lp. Las reducciones de N2O encontradas en ciertas combinaciones de especies pudieron explicarse por una productividad total mayor y por una complementariedad en la morfología radicular. Este estudio muestra que la composición de especies herbáceas es un componente clave que define las emisiones de N2O de los ecosistemas de pasto. La selección de combinaciones de plantas específicas en base a la deposición de N esperada puede, por lo tanto, ser clave para la mitigación de las emisiones de N2O. ABSTRACT Nitrous oxide (N2O) is a potent greenhouse gas (GHG) directly linked to applications of nitrogen (N) fertilizers to agricultural soils. Identifying mitigation strategies for these emissions based on fertilizer management without incurring in yield penalties is of economic and environmental concern. With that aim, this Thesis evaluated: (i) the use of nitrification and urease inhibitors; and (ii) interactions of N fertilizers with (1) water management, (2) crop residues and (3) plant species richness/identity. Meta-analysis, laboratory incubations, greenhouse mesocosm and field experiments were carried out in order to understand and develop effective mitigation strategies. Nitrification and urease inhibitors are proposed as means to reduce N losses, thereby increasing crop nitrogen use efficiency (NUE). However, their effect on crop yield is variable. A meta-analysis was initially conducted to evaluate their effectiveness at increasing NUE and crop productivity. Commonly used nitrification inhibitors (dicyandiamide (DCD) and 3,4-dimethylepyrazole phosphate (DMPP)) and the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) were selected for analysis as they are generally considered the best available options. Our results show that their use can be recommended in order to increase both crop yields and NUE (grand mean increase of 7.5% and 12.9%, respectively). However, their effectiveness was dependent on the environmental and management factors of the studies evaluated. Larger responses were found in coarse-textured soils, irrigated systems and/or crops receiving high nitrogen fertilizer rates. In alkaline soils (pH ≥ 8), the urease inhibitor NBPT produced the largest effect size. Given that their use represents an additional cost for farmers, understanding the best management practices to maximize their effectiveness is paramount to allow effective comparison with other practices that increase crop productivity and NUE. Based on the meta-analysis results, NBPT was identified as a mitigation option with large potential. Urease inhibitors (UIs) have shown to promote high N use efficiency by reducing ammonia (NH3) volatilization. In the last few years, however, some field researches have shown an effective mitigation of UIs over N2O losses from fertilized soils under conditions of low soil moisture. Given the inherent high variability of field experiments where soil moisture content changes rapidly, it has been impossible to mechanistically understand the potential of UIs to reduce N2O emissions and its dependency on the soil water-filled pore space (WFPS). An incubation experiment was carried out aiming to assess what is the main biotic mechanism behind N2O emission when UIs are applied under different soil moisture conditions (40, 60 and 80% WFPS), and to analyze to what extent the soil WFPS regulates the effect of the inhibitor over N2O emissions. A second UI (i.e. PPDA) was also used aiming to compare the effect of NBPT with that of another commercially available urease inhibitor; this allowed us to see if the effect of NBPT was inhibitor-specific or not. The N2O emissions at 40% WFPS were almost negligible, being significantly lower from all fertilized treatments than that produced at 60 and 80% WFPS. Compared to urea alone, NBPT+U reduced the N2O emissions at 60% WFPS but had no effect at 80% WFPS. The application of PPDA significantly increased the emissions with respect to U at 80% WFPS whereas no significant effect was found at 60% WFPS. At 80% WFPS denitrification was the main source of N2O emissions for all treatments. Both nitrification and denitrification had a determinant role on these emissions at 60% WFPS. These results suggest that adequate management of the UI NBPT can provide, under certain soil conditions, an opportunity for N2O mitigation. We translated our previous results to realistic field conditions by means of a field experiment with a barley crop (Hordeum vulgare L.) under rainfed Mediterranean conditions in which we evaluated the effectiveness of NBPT to reduce N losses and increase crop yields. Crop yield, soil mineral N concentrations, dissolved organic carbon (DOC), denitrification potential, NH3, N2O and nitric oxide (NO) fluxes were measured during the growing season. The inclusion of the inhibitor reduced NH3 emissions in the 30 d following urea application by 58% and net N2O and NO emissions in the 95 d following urea application by 86 and 88%, respectively. NBPT addition also increased grain yield by 5% and N uptake by 6%, although neither increase was statistically significant. Under the experimental conditions presented here, these results demonstrate the potential of the urease inhibitor NBPT in abating NH3, N2O and NO emissions from arable soils fertilized with urea, slowing urea hydrolysis and releasing lower concentrations of NH4 + to the upper soil layer. Drip irrigation combined with split application of N fertilizer dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. Some of the main factors (WFPS, NH4 + and NO3 -) regulating the emissions of GHGs (i.e. N2O, carbon dioxide (CO2) and methane (CH4)) and NO can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations, N2O, NO, CH4, and CO2 fluxes were measured during the growing season. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO2 emissions by 21% (P < 0.05) compared with weekly irrigation. Based on yield-scaled Global Warming Potential as well as NO emission factors, we conclude that weekly fertigation with a NO3 --based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Agricultural soils in semiarid Mediterranean areas are characterized by low organic matter contents and low fertility levels. Application of crop residues and/or manures as amendments is a cost-effective and sustainable alternative to overcome this problem. However, these management practices may induce important changes in the nitrogen oxide emissions from these agroecosystems, with additional impacts on CO2 emissions. In this context, a field experiment was carried out with a barley (Hordeum vulgare L.) crop under Mediterranean conditions to evaluate the effect of combining maize (Zea mays L.) residues and N fertilizer inputs (organic and/or mineral) on these emissions. Crop yield and N uptake, soil mineral N concentrations, dissolved organic carbon (DOC), denitrification capacity, N2O, NO and CO2 fluxes were measured during the growing season. The incorporation of maize stover increased N2O emissions during the experimental period by c. 105 %. Conversely, NO emissions were significantly reduced in the plots amended with crop residues. The partial substitution of urea by pig slurry reduced net N2O emissions by 46 and 39 %, with and without the incorporation of crop residues respectively. Net emissions of NO were reduced 38 and 17 % for the same treatments. Molar DOC:NO3 - ratio was found to be a robust predictor of N2O and NO fluxes. The main effect of the interaction between crop residue and N fertilizer application occurred in the medium term (4-6 month after application), enhancing N2O emissions and decreasing NO emissions as consequence of residue incorporation. The substitution of urea by pig slurry can be considered a good management strategy since N2O and NO emissions were reduced by the use of the organic residue. Grassland ecosystems worldwide provide many important ecosystem services but they also function as a major source of N2O, especially in response to N deposition by grazing animals. In order to explore the role of plants as mediators of these emissions, we tested whether and how N2O emissions are dependent on grass species richness and/or specific grass species composition in the absence and presence of urine deposition. We hypothesized that: 1) N2O emissions relate negatively to plant productivity; 2) four-species mixtures have lower emissions than monocultures (as they are expected to be more productive); 3) emissions are lowest in combinations of species with diverging root morphology and high root biomass; and 4) the identity of the key species that reduce N2O emissions is dependent on urine deposition. We established monocultures and two- and four-species mixtures of common grass species with diverging functional traits: Lolium perenne L. (Lp), Festuca arundinacea Schreb. (Fa), Phleum pratense L. (Php) and Poa trivialis L. (Pt), and quantified N2O emissions for 42 days. We found no relation between plant species richness and N2O emissions. However, N2O emissions were significantly reduced in specific plant species combinations. In the absence of urine, plant communities of Fa+Php acted as a sink for N2O, whereas the monocultures of these species constituted a N2O source. With urine application Lp+Pt plant communities reduced (P < 0.001) N2O emissions by 44% compared to monocultures of Lp. Reductions in N2O emissions by species mixtures could be explained by total biomass productivity and by complementarity in root morphology. Our study shows that plant species composition is a key component underlying N2O emissions from grassland ecosystems. Selection of specific grass species combinations in the context of the expected nitrogen deposition regimes may therefore provide a key management practice for mitigation of N2O emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to establish rational nitrogen (N) application and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its balance is crucial. Excessive doses of N and/or water applied to fertigated crops involve a substantial risk of aquifer contamination by nitrate; but knowledge of N cycling and availability within the soil could assist in avoiding this excess. In central Spain, the main horticultural fertigated crop is the melon type ?piel de sapo¿ and it is cultivated in vulnerable zones to nitrate pollution (Directive 91/676/CEE). However, until few years ago there were not antecedents related to the optimization of nitrogen fertilization together with irrigation. Water and N footprint are indicators that allow assessing the impact generated by different agricultural practices, so they can be used to improve the management strategies in fertigated crop systems. The water footprint distinguishes between blue water (sources of water applied to the crop, like irrigation and precipitation), green water (water used by the crop and stored in the soil), and it is furthermore possible to quantify the impact of pollution by calculating the grey water, which is defined as the volume of polluted water created from the growing and production of crops. On the other hand, the N footprint considers green N (nitrogen consumed by the crops and stored in the soil), blue N (N available for crop, like N applied with mineral and/or organic fertilizers, N applied with irrigation water and N mineralized during the crop period), whereas grey N is the amount of N-NO3- washed from the soil to the aquifer. All these components are expressed as the ratio between the components of water or N footprint and the yield (m3 t-1 or kg N t-1 respectively). The objetives of this work were to evaluate the impact derivated from the use of different fertilizer practices in a melon crop using water and N footprint.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When expressed in Xenopus oocytes, the trout red cell anion exchanger tAE1, but not the mouse exchanger mAE1, elicited a transport of electroneutral solutes (sorbitol, urea) in addition to the expected anion exchange activity. Chimeras constructed from mAE1 and tAE1 allowed us to identify the tAE1 domains involved in the induction of these transports. Expression of tAE1 (but not mAE1) is known to generate an anion conductance associated with a taurine transport. The present data provide evidence that (i) the capacity of tAE1 and tAE1 chimeras to generate urea and sorbitol permeability also was associated with an anion conductance; (ii) the same inhibitors affected both the permeability of solutes and anion conductance; and (iii) no measurable water transport was associated with the tAE1-dependent conductance. These results support the view that fish red blood cells, to achieve cell volume regulation in response to hypotonic swelling, activate a tAE1-associated anion channel that can mediate the passive transport of taurine and electroneutral solutes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The market of flowers and ornamentals such as croton (Codiaeum variegatum) and petunia (Petunia×hybrida Vilm.-Andr) have been created new technologies to constantly development, as one of the most promising segments of horticulture. Fertilization providing adequate nutrition and less leaching to the environment is the objective of numerous studies around the world. Therefore, two studies were conducted to evaluate the use of controlled release fertilizer (CRF) on the growth of two ornamental species, and N loss by leaching. The first experiment aim to evaluate sources and rates of CRF and water soluble fertilizer (WSF) on croton growth and nitrogen concentration on drained solution. Results showed that treatments with WSF and low rates of CRF provided higher plants growth, and the amount of N leached was higher for WSF treatments. The second experiment objective to compare plant performance and cost for strategies that potentially provide adequate nutrition during both the production and consumer phases for container-grown Petunia plants. In addition, two experiments were conducted to evaluate nutrient release in sand containers inside of the greenhouse and under controlled temperature conditions without plants. Results showed that during production phase all fertilizer treatments produced high quality plants, and during consumer phase, plants grown with WSF only during the production phase were nutrient-deficient, while plants receiving CRFs were still growing vigorously, especially in a high rate. The release rates of all CRF products were temperature-dependent. In conclusion CRF provided plant growth at the same rate that WSF, with less N leaching and extra cost less than U$0.065 per plant with CRF during production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants produce a number of substances and products and primary and secondary metabolites (SM) are amongst them with many benefits but limitation as well. Usually, the fodder are not considered toxic to animals or as a source having higher SM. The Brachiaria decumbens has a considerable nutritional value, but it is considered as a toxic grass for causing photosensitization in animals, if the grass is not harvested for more than 30 days or solely. The absence of detailed information in the literature about SM in Brachiaria, metabolites production and its chemical profile enable us to focus not only on the nutritive value but to get answers in all aspects and especially on toxicity. The study was conducted in the period of december 2013 to december 2014; in greenhouse FZEA-USP. B. decumbens was used with two cutting heights (10 and 20 cm) and nitrogen doses (0, 150, 300 and 450 kg ha-1) in complete randomized block design. The bromatological analysis were carried out on near infrared spectroscopy. Generally, the application of 150 kg ha-1 N was sufficient to promote the nutritional value in B. decumbens but above it the nitrogen use efficiency decline significantly. The highest dry matter yield (99.97 g/pot) was observed in autumn and the lowest was in winter (30.20 g/pot). While, as per nitrogen dose the average highest dry matter yield was at 150 kg ha-1 (79.98 g/pot). The highest crude protein was observed in winter (11.88%) and the lowest in autumn (7.78%). By the cutting heights; the 10 cm proved to have high CP (9.51%). In respect of fibrous contents, the highest acid detergent fiber was noted in summer (36.37%) and lowest in winter (30.88%). While the neutral detergent fiber was being highest in autumn and lowest in spring (79.60%). The highest in vitro dry matter and organic matter digestibilities were noted at 300 kg ha-1 N; being 68.06 and 60.57%; respectively; with the lowest observed in without N treatments (62.63% and 57.97), respectively. For determination of the classes, types and concentration of SM in B. decumbens, phytochemical tests, thin layer and liquid chromatography-mass spectrometry and nuclear magnetic resonance analysis were carried out. Height, nitrogen and seasons significantly (P <0.0001) affected the secondary metabolic profile. A new protodioscin isomer (protoneodioscin (25S-)) was identified for first time in B. decumbens and is supposed to be the probable toxicity reason. Its structure was verified by 1D and 2D NMR techniques (1H, 13C) and 1D (COSY-45, edited HSQC, HMBC, H2BC, HSQC -TOCSY, NOESY and 1 H, 1 H, J). All factors influence the metabolic profile significantly (P <0.0001). The lowest phenols were at 300 kg ha-1 while the lowest flavones were at 0 kg ha-1. Season wise the highest phenols occurred in autumn (19.65 mg/g d.wt.) and highest flavones (28.87 mg/g d.wt.) in spring. Seasons effect the saponin production significantly (P <0.0001) and the results showed significant differences in the protodioscin (17.63±4.3 - 22.57±2.2 mg/g d.wt.) and protoneodioscin (23.3±1.2 - 31.07±2.9 mg/g d.wt.) concentrations. The highest protodioscin isomers concentrations were observed in winter and spring and by N doses the highest were noted in 300 kg ha-1. Simply, all factors significantly played their role in varying concentrations of secondary metabolites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wildfires produce a significant release of gases and particles affecting climate and air quality. In the Mediterranean region, shrublands significantly contribute to burned areas and may show specific emission profiles. Our objective was to depict and quantify the primary-derived aerosols and precursors of secondary particulate species released during shrubland experimental fires, in which fire-line intensity values were equivalent to those of moderate shrubland wildfires, by using a number of different methodologies for the characterization of organic and inorganic compounds in both gas-phase and particulate-phase. Emissions of PM mass, particle number concentrations and organic and inorganic PMx components during flaming and smouldering phases were characterized in a field shrubland fire experiment. Our results revealed a clear prevalence of K+ and SO42- as inorganic ions released during the flaming-smouldering processes, accounting for 68 to 80% of the inorganic soluble fraction. During the residual-smouldering phases, in addition to K+ and SO42-, Ca2+ was found in significant amounts probably due the predominance of re-suspension processes (ashes and soil dust) over other emission sources during this stage. Concerning organic markers, the chromatograms were dominated by phenols, n-alkanals and n-alkanones, as well as by alcohol biomarkers in all the PMx fractions investigated. Levoglucosan was the most abundant degradation compound with maximum emission factors between 182 and 261 mg kg-1 in PM2.5 and PM10 respectively. However, levoglucosan was also observed in significant amounts in the gas-phase. The most representative organic volatile constituents in the smoke samples were alcohols, carbonyls, acids, monocyclic and bicyclic arenes, isoprenoids and alkanes compounds. The emission factors obtained in this study may contribute to the validation and improvement of national and international emission inventories of this intricate and diffuse emission source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monoguanylation of (1S,2S)- and (1R,2R)-cyclohexane-1,2-diamine affords chiral primary amine-guanidines that are used as chiral organocatalysts in the enantioselective Michael addition of aldehydes, particularly α,α-disubstituted aldehydes, to maleimides. The reaction is carried out in the presence of imidazole, as an additive, in aqueous N,N-dimethylformamide, as the solvent, and affords the corresponding enantioenriched succinimides in high or quantitative yields with enantioselectivities up to 96 % ee. Theoretical calculations (DFT and M06–2X) suggest a different hydrogen-bonding coordination pattern between the maleimide (C=O) and the catalyst (NH groups) is responsible for the enantioinduction switch that is observed when the reaction is carried out using primary amine-guanidines versus primary amine-thioureas as the organocatalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wide variety of chiral succinimides have been prepared in high yields and enantioselectivities by asymmetric conjugate addition of 1,3-dicarbonyl compounds to maleimides under very mild reaction conditions using a bifunctional benzimidazole-derived organocatalyst. Computational and NMR studies support the hydrogen-bonding activation role of the catalyst and the origin of the stereoselectivity of the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple change in the polarity of the solvent allows both enantiomers of substituted succinimides to be obtained in the enantioselective conjugate addition reaction of aldehydes, mainly α,α-disubstituted, to maleimides catalysed by chiral carbamate-monoprotected trans-cyclohexane-1,2-diamines. Using a single enantiomer of the organocatalyst, both enantiomers of the resulting Michael adducts are obtained in high yields by simply changing the reaction solvent from aqueous DMF (up to 84 % ee) to chloroform (up to 86 % ee). Theoretical calculations are used to explain this uncommon reversal of the enantioselectivity; two transition state orientations of different polarities are differently favoured in polar or nonpolar solvents.