964 resultados para optical measuring system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rate of carbon dioxide production is commonly used as a measure of microbial activity in the soil. The traditional method of CO2 determination involves trapping CO2 in an alkali solution and then determining CO2 concentration indirectly by titration of the remaining alkali in the solution. This method is still commonly employed in laboratories throughout the world due to its relative simplicity and the fact that it does not require expensive, specific equipment. However, there are several drawbacks: the method is time-consuming, requires large amounts of chemicals and the consistency of results depends on the operator's skills. With this in mind, an improved method was developed to analyze CO2 captured in alkali traps, which is cheap and relatively simple, with a substantially shorter sample handling time and reproducibility equivalent to the traditional titration method. A comparison of the concentration values determined by gas phase flow injection analysis (GPFIA) and titration showed no significant difference (p > 0.05), but GPFIA has the advantage that only a tenth of the sample volume of the titration method is required. The GPFIA system does not require the purchase of new, costly equipment but the device was constructed from items commonly found in laboratories, with suggestions for alternative configurations for other detection units. Furthermore, GPFIA for CO2 analysis can be equally applied to samples obtained from either the headspace of microcosms or from a sampling chamber that allows CO2 to be released from alkali trapping solutions. The optimised GPFIA method was applied to analyse CO2 released from degrading hydrocarbons from a site contaminated by diesel spillage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coherence resonance occurring in semiconductor lasers with optical feedback is studied via the Lang-Kobayashi model with external nonwhite noise in the pumping current. The temporal correlation and the amplitude of the noise have a highly relevant influence in the system, leading to an optimal coherent response for suitable values of both the noise amplitude and correlation time. This phenomenon is quantitatively characterized by means of several statistical measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate within mean-field theory the influence of a one-dimensional optical lattice and of trapped degenerate fermions on the critical rotational frequency for vortex line creation in a Bose-Einstein condensate. We consider laser intensities of the lattice such that quantum coherence across the condensate is ensured. We find a sizable decrease of the thermodynamic critical frequency for vortex nucleation with increasing applied laser strength and suggest suitable parameters for experimental observation. Since 87Rb-40K mixtures may undergo collapse, we analyze the related question of how the optical lattice affects the mechanical stability of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image processing. This paper provides the theoretical background and technical information for performing the experiment. The proposed activity requires students able to develop a wide range of skills since they are expected to deal with optical components, including spatial light modulators, and develop scripts to perform some calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn-In-Sn-O (ZITO) with improved electrical and optical properties have been achieved. The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10 - 4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical aberration due to the nonflatness of spatial light modulators used in holographic optical tweezers significantly deteriorates the quality of the trap and may easily prevent stable trapping of particles. We use a Shack-Hartmann sensor to measure the distorted wavefront at the modulator plane; the conjugate of this wavefront is then added to the holograms written into the display to counteract its own curvature and thus compensate the optical aberration of the system. For a Holoeye LC-R 2500 reflective device, flatness is improved from 0.8¿ to ¿/16 (¿=532 nm), leading to a diffraction-limited spot at the focal plane of the microscope objective, which makes stable trapping possible. This process could be fully automated in a closed-loop configuration and would eventually allow other sources of aberration in the optical setup to be corrected for.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we have performed magneto-optical Kerr effect (MOKE) measurement on epitaxial La2/3Sr1/3MnO3 thin films containing artificial interfaces created by laser-patterning the SrTiO3 substrate. The observed increase of the resistivity and of the high-field magnetoresistance when measuring the films across the interface arrays are related to the reduction of the magnetization of the interfaces with respect to the rest of the film. As observed by the local MOKE probe, the structural disorder in the manganite film induced by the underlying patterned substrate leads to a large spin disorder responsible for a strong high-field susceptibility of the resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Actively Heated Fiber Optics (AHFO) method to estimate soil moisture is tested and the analysis technique improved on. The measurements were performed in a lysimeter uniformly packed with loam soil with variable water content profiles. In the first meter of the soil profi le, 30 m of fiber optic cable were installed in a 12 loops coil. The metal sheath armoring the fiber cable was used as an electrical resistance heater to generate a heat pulse, and the soil response was monitored with a Distributed Temperature Sensing (DTS) system. We study the cooling following three continuous heat pulses of 120 s at 36 W m(-1) by means of long-time approximation of radial heat conduction. The soil volumetric water contents were then inferred from the estimated thermal conductivities through a specifically calibrated model relating thermal conductivity and volumetric water content. To use the pre-asymptotic data we employed a time correction that allowed the volumetric water content to be estimated with a precision of 0.01-0.035 (m(3) m(-3)). A comparison of the AHFO measurements with soil-moisture measurements obtained with calibrated capacitance-based probes gave good agreement for wetter soils [discrepancy between the two methods was less than 0.04 (m(3) m(-3))]. In the shallow drier soils, the AHFO method underestimated the volumetric water content due to the longertime required for the temperature increment to become asymptotic in less thermally conductive media [discrepancy between the two methods was larger than 0.1 (m(3) m(-3))]. The present work suggests that future applications of the AHFO method should include longer heat pulses, that longer heating and cooling events are analyzed, and, temperature increments ideally be measured with higher frequency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes a project begun in January 1989 and completed December 1990, with the primary objective of obtaining sufficiently accurate horizontal and vertical control by using Global Positioning System (GPS) for highway applications. The ISU research group studied the operations of the Ashtech GPS receiver in static, pseudo-static, kinematic, and pseudo-kinematic modes. By using the Electronic Distance Measuring Instrument (EDMI) Calibration Baseline at ISU, the GPS receiver was tested for distance measurement accuracy. It was found that GPS measurements differed from the baseline distance by about 5.3 mm. Four projects were undertaken to further evaluate and improve the horizontal as well as the vertical accuracies of the GPS receiver -- (1) The Campus Project: with all points concentrated within a one-mile radius; (2) The Des Moines Project: a typical DOT project with all the points within a five-mile radius; (3) The Iowa Project: with all points within a 100-mile radius in the state of Iowa; and (4) The Mustang Project: an extension of the Iowa project, including a typical DOT project of about 10 miles within the inner 30 mile radius of the Iowa project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this study were to develop a computerized method to screen for potentially avoidable hospital readmissions using routinely collected data and a prediction model to adjust rates for case mix. We studied hospital information system data of a random sample of 3,474 inpatients discharged alive in 1997 from a university hospital and medical records of those (1,115) readmitted within 1 year. The gold standard was set on the basis of the hospital data and medical records: all readmissions were classified as foreseen readmissions, unforeseen readmissions for a new affection, or unforeseen readmissions for a previously known affection. The latter category was submitted to a systematic medical record review to identify the main cause of readmission. Potentially avoidable readmissions were defined as a subgroup of unforeseen readmissions for a previously known affection occurring within an appropriate interval, set to maximize the chance of detecting avoidable readmissions. The computerized screening algorithm was strictly based on routine statistics: diagnosis and procedures coding and admission mode. The prediction was based on a Poisson regression model. There were 454 (13.1%) unforeseen readmissions for a previously known affection within 1 year. Fifty-nine readmissions (1.7%) were judged avoidable, most of them occurring within 1 month, which was the interval used to define potentially avoidable readmissions (n = 174, 5.0%). The intra-sample sensitivity and specificity of the screening algorithm both reached approximately 96%. Higher risk for potentially avoidable readmission was associated with previous hospitalizations, high comorbidity index, and long length of stay; lower risk was associated with surgery and delivery. The model offers satisfactory predictive performance and a good medical plausibility. The proposed measure could be used as an indicator of inpatient care outcome. However, the instrument should be validated using other sets of data from various hospitals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential of digital holography for complex manipulation of micron-sized particles with optical tweezers has been clearly demonstrated. By contrast, its use in quantitative experiments has been rather limited, partly due to fluctuations introduced by the spatial light modulator (SLM) that displays the kinoforms. This is an important issue when high temporal or spatial stability is a concern. We have investigated the performance of both an analog-addressed and a digitally-addressed SLM, measuring the phase fluctuations of the modulated beam and evaluating the resulting positional stability of a holographic trap. We show that, despite imparting a more unstable modulation to the wavefront, our digitally-addressed SLM generates optical traps in the sample plane stable enough for most applications. We further show that traps produced by the analog-addressed SLM exhibit a superior pointing stability, better than 1 nm, which is comparable to that of non-holographic tweezers. These results suggest a means to implement precision force measurement experiments with holographic optical tweezers (HOTs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major problem with holographic optical tweezers (HOTs) is their incompatibility with laser-based position detection methods, such as back-focal-plane interferometry (BFPI). The alternatives generally used with HOTs, like high-speed video tracking, do not offer the same spatial and temporal bandwidths. This has limited the use of this technique in precise quantitative experiments. In this paper, we present an optical trap design that combines digital holography and back-focal-plane displacement detection. We show that, with a particularly simple setup, it is possible to generate a set of multiple holographic traps and an additional static non-holographic trap with orthogonal polarizations and that they can be, therefore, easily separated for measuring positions and forces with the high positional and temporal resolutions of laser-based detection. We prove that measurements from both polarizations contain less than 1% crosstalk and that traps in our setup are harmonic within the typical range. We further tested the instrument in a DNA stretching experiment and we discuss an interesting property of this configuration: the small drift of the differential signal between traps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three standard radiation qualities (RQA 3, RQA 5 and RQA 9) and two screens, Kodak Lanex Regular and Insight Skeletal, were used to compare the imaging performance and dose requirements of the new Kodak Hyper Speed G and the current Kodak T-MAT G/RA medical x-ray films. The noise equivalent quanta (NEQ) and detective quantum efficiencies (DQE) of the four screen-film combinations were measured at three gross optical densities and compared with the characteristics for the Kodak CR 9000 system with GP (general purpose) and HR (high resolution) phosphor plates. The new Hyper Speed G film has double the intrinsic sensitivity of the T-MAT G/RA film and a higher contrast in the high optical density range for comparable exposure latitude. By providing both high sensitivity and high spatial resolution, the new film significantly improves the compromise between dose and image quality. As expected, the new film has a higher noise level and a lower signal-to-noise ratio than the standard film, although in the high frequency range this is compensated for by a better resolution, giving better DQE results--especially at high optical density. Both screen-film systems outperform the phosphor plates in terms of MTF and DQE for standard imaging conditions (Regular screen at RQA 5 and RQA 9 beam qualities). At low energy (RQA 3), the CR system has a comparable low-frequency DQE to screen-film systems when used with a fine screen at low and middle optical densities, and a superior low-frequency DQE at high optical density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: EOS (EOS imaging S.A, Paris, France) is an x-ray imaging system that uses slot-scanning technology in order to optimize the trade-off between image quality and dose. The goal of this study was to characterize the EOS system in terms of occupational exposure, organ doses to patients as well as image quality for full spine examinations. METHODS: Occupational exposure was determined by measuring the ambient dose equivalents in the radiological room during a standard full spine examination. The patient dosimetry was performed using anthropomorphic phantoms representing an adolescent and a five-year-old child. The organ doses were measured with thermoluminescent detectors and then used to calculate effective doses. Patient exposure with EOS was then compared to dose levels reported for conventional radiological systems. Image quality was assessed in terms of spatial resolution and different noise contributions to evaluate the detector's performances of the system. The spatial-frequency signal transfer efficiency of the imaging system was quantified by the detective quantum efficiency (DQE). RESULTS: The use of a protective apron when the medical staff or parents have to stand near to the cubicle in the radiological room is recommended. The estimated effective dose to patients undergoing a full spine examination with the EOS system was 290μSv for an adult and 200 μSv for a child. MTF and NPS are nonisotropic, with higher values in the scanning direction; they are in addition energy-dependent, but scanning speed independent. The system was shown to be quantum-limited, with a maximum DQE of 13%. The relevance of the DQE for slot-scanning system has been addressed. CONCLUSIONS: As a summary, the estimated effective dose was 290μSv for an adult; the image quality remains comparable to conventional systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: In alpine skiing, chronometry analysis is currently the most common tool to assess performance. It is widely used to rank competitors during races, as well as to manage athletes training and to evaluate material. Usually, this measurement is accurately realized using timing cells. Nevertheless, these devices are too complex and expensive to allow chronometry of every gates crossing. On the other side, differential GPS can be used for measuring gate crossing time (Waegli et al). However, this is complex (e.g. recording gate position with GPS) and mainly used in research applications. The aim of the study was to propose a wearable system to time gates crossing during alpine skiing slalom (SL), which is suitable for routine uses. METHODS: The proposed system was composed of a 3D accelerometer (ADXL320®, Analog Device, USA) placed at the sacrum of the athlete, a matrix of force sensors (Flexiforce®, Tekscan, USA) fixed on the right shin guard and a data logger (Physilog®, BioAGM, Switzerland). The sensors were sampled at 500 Hz. The crossing time were calculated in two phases. First, the accelerometer was used to detect the curves by considering the maximum of the mediolateral peak acceleration. Then, the force sensors were used to detect the impacts with the gates by considering maximum force variation. In case of non impact, the detection was realized based on the acceleration and features measured at the other gates. In order to assess the efficiency of the system, two different SL were monitored twice for two world cup level skiers, a male SL expert and a female downhill expert. RESULTS AND DISCUSSION: The combination of the accelerometer and force sensors allowed to clearly identify the gate crossing times. When comparing the runs of the SL expert and the downhill expert, we noticed that the SL expert was faster. For example for the first SL, the overall difference between the best run of each athlete was of 5.47s. At each gate, the SL expert increased the time difference slower at the beginning (0.27s/gate) than at the end (0.34s/gate). Furthermore, when comparing the runs of the SL expert, a maximum time difference of 20ms at each gate was noticed. This showed high repeatability skills of the SL expert. In opposite, the downhill expert with a maximum difference time of 1s at each gate was clearly less repeatable. Both skiers were not disturbed by the system. CONCLUSION: This study proposed a new wearable system to automatically time gates crossing during alpine skiing slalom combining force and accelerometer sensors. The system was evaluated with two professional world cup skiers and showed a high potential. This system could be extended to time other parameters. REFERENCES Waegli A, Skaloud J (2007). Inside GNSS, Spring, 24-34.