896 resultados para nitrogen-doped
Resumo:
The fate of a small oral dose of protein given to overnight-starved rats was studied. After 3 h, 62 per cent of the protein amino acids had been absorbed. Most of the absorbed N went into the bloodstream through the portal in the form of amino acids, but urea and ammonia were also present. About one-quarter of all absorbed N was carried as lymph amino acids. The liver was able to take all portal free ammonia and a large proportion of portal amino acids, releasing urea. The hepatic N balance was negative, indicating active proteolysis and net loss of liver protein.
Resumo:
Oxalic and oxamic acids are the ultimate and more persistent by-products of the degradation of N-aromatics by electrochemical advanced oxidation processes (EAOPs). In this paper, the kinetics and oxidative paths of these acids have been studied for several EAOPs using a boron-doped diamond (BDD) anode and a stainless steel or an air-diffusion cathode. Anodic oxidation (AO-BDD) in the presence of Fe2+ (AO-BDD-Fe2+) and under UVA irradiation (AO-BDD-Fe2+-UVA), along with electro-Fenton (EF-BDD), was tested. The oxidation of both acids and their iron complexes on BDD was clarified by cyclic voltammetry. AO-BDD allowed the overall mineralization of oxalic acid, but oxamic acid was removed much more slowly. Each acid underwent a similar decay in AO-BDD-Fe2+ and EFBDD, as expected if its iron complexes were not attacked by hydroxyl radicals in the bulk. The faster and total mineralization of both acids was achieved in AO-BDD-Fe2+-UVA due to the high photoactivity of their Fe(III) complexes that were continuously regenerated by oxidation of their Fe(II) complexes. Oxamic acid always released a larger proportion of NH4 + than NO3- ion, as well as volatile NOx species. Both acids were independently oxidized at the anode in AO-BDD, but in AO-BDD-Fe2+-UVA oxamic acid was more slowlydegraded as its content decreased, without significant effect on oxalic acid decay. The increase in current density enhanced the oxidation power of the latter method, with loss of efficiency. High Fe2+ contents inhibited the oxidation of Fe(II) complexes by the competitive oxidation of Fe2+ to Fe3+. Low current densities and Fe2+ contents are preferable to remove more efficiently these acids by the most potent AO-BDD-Fe2+-UVA method.
Resumo:
The character of the electronic ground state of La0.5Ca0.5MnO3 has been addressed with quantum chemical calculations on large embedded clusters. We find a charge ordered state for the crystal structure reported by Radaelli et al. [Phys. Rev. B 55, 3015 (1997)] and Zener polaron formation in the crystal structure with equivalent Mn sites proposed by Daoud-Aladine et al. [Phys. Rev. Lett. 89, 097205 (2002)]. Important O to Mn charge transfer effects are observed for the Zener polaron.
Resumo:
The observation of coherent tunnelling in Cu2+ - and Ag2+ -doped MgO and CaO:Cu2+ was a crucial discovery in the realm of the Jahn-Teller (JT) effect. The main reasons favoring this dynamic behavior are now clarified through ab initio calculations on Cu2+ - and Ag2+ -doped cubic oxides. Small JT distortions and an unexpected low anharmonicity of the eg JT mode are behind energy barriers smaller than 25 cm-1 derived through CASPT2 calculations for Cu2+ - and Ag2+ -doped MgO and CaO:Cu2+ . The low anharmonicity is shown to come from a strong vibrational coupling of MO610- units (M=Cu,Ag) to the host lattice. The average distance between the d9 impurity and ligands is found to vary significantly on passing from MgO to SrO following to a good extent the lattice parameter.
Resumo:
The present study discusses the effect of iron doping in TiO2 thin films deposited by rf sputtering. Iron doping induces a structural transformation from anatase to rutile and electrical measurements indicate that iron acts as an acceptor impurity. Thermoelectric power measurement shows a transition between n-type and p-type electrical conduction for an iron concentration around 0.13 at.%. The highest p-type conductivity at room temperature achieved by iron doping was 10(-6) S m(-1).
Resumo:
Selostus: Maassa olevan nitraattitypen arviointi simulointimallin avulla
Resumo:
Selostus: Italian raiheinä aluskasvina vähentää typen huuhtoutumista ohranviljelyssä
Resumo:
Cessation of traditional management threatens semi-natural grassland diversity through the colonisation or increase of competitive species adapted to nutrient-poor conditions. Regular mowing is one practice that controls their abundance. This study evaluated the ecophysiological mechanisms limiting short- and long-term recovery after mowing for Festuca paniculata, a competitive grass that takes over subalpine grasslands in the Alps following cessation of mowing. We quantified temporal variations in carbon (C) and nitrogen (N) content, starch, fructan and total soluble sugars in leaves, stem bases and roots of F. paniculata during one growth cycle in mown and unmown fields and related them to the dynamics of soil mineral N concentration and soil moisture. Short-term results suggest that the regrowth of F. paniculata following mowing might be N-limited, first because of N dilution by C increments in the plant tissue, and second, due to low soil mineral N and soil moisture at this time of year. However, despite short-term effects of mowing on plant growth, C and N content and concentration at the beginning of the following growing season were not affected. Nevertheless, total biomass accumulation at peak standing biomass was largely reduced compared to unmown fields. Moreover, lower C storage capacity at the end of the growing season impacted C allocation to vegetative reproduction during winter, thereby dramatically limiting the horizontal growth of F. paniculata tussocks in the long term. We conclude that mowing reduces the growth of F. paniculata tussocks through both C and N limitation. Such results will help understanding how plant responses to defoliation regulate competitive interactions within plant communities.
Resumo:
Selostus: Maan tiiviyden, sadetuksen ja typpilannoituksen vaikutus porkkanan kivennäisainepitoisuuteen ja ravinteiden ottoon sekä nitraatin kertymiseen
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in the Brazilian Amazonia, Brazil, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. The objective was to determine the effect of shade on photosynthetic features and leaf nitrogen content of I. asarifolia and S. cayennensis. High-irradiance grown I. asarifolia leaves had significantly higher dark respiration and light saturated rates of photosynthesis than low-irradiance leaves. No significant differences for these traits, between treatments, were observed in S. cayennensis. Low-irradiance leaves of both species displayed higher CO2 assimilation rates under low irradiance. High-irradiance grown leaves of both species had less nitrogen per unit of weight. Low-irradiance S. cayennensis had more nitrogen per unit of leaf area than high-irradiance plants; however, I. asarifolia showed no consistent pattern for this variable through time. For S. cayennensis, leaf nitrogen content and CO2 assimilation were inversely correlated to the amount of biomass allocated to developing reproductive structures. These results are discussed in relation to their ecological and weed management implications.