980 resultados para myogenin promoter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The C4 enzyme pyruvate orthophosphate dikinase is encoded by a single gene, Pdk, in the C4 plant Flaveria trinervia. This gene also encodes enzyme isoforms located in the chloroplast and in the cytosol that do not have a function in C4 photosynthesis. Our goal is to identify cis-acting DNA sequences that regulate the expression of the gene that is active in the C4 cycle. We fused 1.5 kb of a 5′ flanking region from the Pdk gene, including the entire 5′ untranslated region, to the uidA reporter gene and stably transformed the closely related C4 species Flaveria bidentis. β-Glucuronidase (GUS) activity was detected at high levels in leaf mesophyll cells. GUS activity was detected at lower levels in bundle-sheath cells and stems and at very low levels in roots. This lower-level GUS expression was similar to the distribution of mRNA encoding the nonphotosynthetic form of the enzyme. We conclude that cis-acting DNA sequences controlling the expression of the C4 form in mesophyll cells and the chloroplast form in other cells and organs are co-located within the same 5′ region of the Pdk gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytokinin group of plant hormones regulates aspects of plant growth and development, including the release of lateral buds from apical dominance and the delay of senescence. In this work the native promoter of a cytokinin synthase gene (ipt) was removed and replaced with a Cu-controllable promoter. Tobacco (Nicotiana tabacum L. cv tabacum) transformed with this Cu-inducible ipt gene (Cu-ipt) was morphologically identical to controls under noninductive conditions in almost all lines produced. However, three lines grew in an altered state, which is indicative of cytokinin overproduction and was confirmed by a full cytokinin analysis of one of these lines. The in vitro treatment of morphologically normal Cu-ipt transformants with Cu2+ resulted in delayed leaf senescence and an increase in cytokinin concentration in the one line analyzed. In vivo, inductive conditions resulted in a significant release of lateral buds from apical dominance. The morphological changes seen during these experiments may reflect the spatial aspect of control exerted by this gene expression system, namely expression from the root tissue only. These results confirmed that endogenous cytokinin concentrations in tobacco transformants can be temporally and spatially controlled by the induction of ipt gene expression through the Cu-controllable gene-expression system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genotoxic stress activation of the tumor suppressor transcription factor p53 involves post-translational C-terminal modifications that increase both protein stability and DNA binding activity. We compared the requirement for p53 protein activation of p53 target sequences in two major p53-regulated genes, p21/WAF1 (encoding a cell cycle inhibitory protein) and Mdm2 (encoding a ubiquitin ligase that targets p53 for proteolytic degradation). The p53 binding site in the proximal p21/WAF1 promoter contains a single p53 binding consensus sequence, while the p53 binding site in the Mdm2 promoter contains two consensus sequences linked by a 17 bp spacer. Binding of recombinant p53 protein to the p21/WAF1 binding site required monoclonal antibody PAb421, which can mimic activating phosphorylation and/or acetylation events at the C-terminus. In contrast, recombinant p53 bound strongly to the Mdm2 binding site in the absence of PAb421 antibody. Separate binding to each consensus sequence of the Mdm2 binding site still required PAb421, indicating that p53 binding was not simply due to greater affinity to the Mdm2 consensus sequences. Linking two p21/WAF1 binding sites with the 17 bp spacer region from the Mdm2 gene eliminated the PAb421 requirement for p53 binding to the p21/WAF1 site. These results suggest a mechanism for regulation of Mdm2 gene transcription that differs from that other p53-induced genes by its lack of a requirement for C-terminal activation of p53 protein. A steady induction of Mdm2 protein would maintain p53 protein at low levels until post-translational modifications following DNA damage increased p53 activity towards other genes, mediating p53 growth inhibitory and apoptotic activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the fact that Papilio glaucus and Papilio polyxenes share no single hostplant species, both species feed to varying extents on hostplants that contain furanocoumarins. P. glaucus contains two nearly identical genes, CYP6B4v2 and CYP6B5v1, and P. polyxenes contains two related genes, CYP6B1v3 and CYP6B3v2. Except for CYP6B3v2, the substrate specificity of which has not yet been defined, each of the encoded cytochrome P450 monooxygenases (P450s) metabolizes an array of linear furanocoumarins. All four genes are transcriptionally induced in larvae by exposure to the furanocoumarin xanthotoxin; several are also induced by other furanocoumarins. Comparisons of the organizational structures of these genes indicate that all have the same intron/exon arrangement. Sequences in the promoter regions of the P. glaucus CYP6B4v2/CYP6B5v1 genes and the P. polyxenes CYP6B3v2 gene are similar but not identical to the -146 to -97 region of CYP6B1v3 gene, which contains a xanthotoxin-responsive element (XRE-xan) important for basal and xanthotoxin-inducible transcription of CYP6B1v3. Complements of the xenobiotic-responsive element (XRE-AhR) in the dioxin-inducible human and rat CYP1A1 genes also exist in all four promoters, suggesting that these genes may be regulated by dioxin. Antioxidant-responsive elements (AREs) in mouse and rat glutathione S-transferase genes and the Barbie box element (Bar) in the bacterial CYP102 gene exist in the CYP6B1v3, CYP6B4v2, and CYP6B5v1 promoters. Similarities in the protein sequences, intron positions, and xanthotoxin- and xenobiotic-responsive promoter elements indicate that these insect CYP6B genes are derived from a common ancestral gene. Evolutionary comparisons between these P450 genes are the first available for a group of insect genes transcriptionally regulated by hostplant allelochemicals and provide insights into the process by which insects evolve specialized feeding habits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously linked aging, carcinogenesis, and de novo methylation within the promoter of the estrogen receptor (ER) gene in human colon. We now examine the dynamics of this process for the imprinted gene for insulin-like growth factor II (IGF2). In young individuals, the P2-4 promoters of IGF2 are methylated exclusively on the silenced maternal allele. During aging, this promoter methylation becomes more extensive and involves the originally unmethylated allele. Most adult human tumors, including colon, breast, lung, and leukemias, exhibit increased methylation at the P2-4 IGF2 promoters, suggesting further spreading during the neoplastic process. In tumors, this methylation is associated with diminished or absent IGF2 expression from the methylated P3 promoter but maintained expression from P1, an upstream promoter that is not contained within the IGF2 CpG island. Our results demonstrate a remarkable evolution of methylation patterns in the imprinted promoter of the IGF2 gene during aging and carcinogenesis, and provide further evidence for a potential link between aberrant methylation and diseases of aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AML1 is involved in the (8;21) translocation, associated with acute myelogenous leukemia (AML)-type M2, which results in the production of the AML1-ETO fusion protein: the amino-terminal 177 amino acids of AML1 and the carboxyl-terminal 575 amino acids of ETO. The mechanism by which AML1-ETO accomplishes leukemic transformation is unknown; however, AML1-ETO interferes with AML1 transactivation of such AML1 targets as the T-cell receptor beta enhancer and the granulocyte-macrophage colony-stimulating factor promoter. Herein, we explored the effect of AML1-ETO on regulation of a myeloid-specific AML1 target, the macrophage colony-stimulating factor (M-CSF) receptor promoter. We found that AML1-ETO and AML1 work synergistically to transactivate the M-CSF receptor promoter, thus exhibiting a different activity than previously described. Truncation mutants within the ETO portion of AML1-ETO revealed the region of ETO necessary for the cooperativity between AML1 and AML1-ETO lies between amino acids 347 and 540. Endogenous M-CSF receptor expression was examined in Kasumi-1 cells, derived from a patient with AML-M2 t(8;21) and the promonocytic cell line U937. Kasumi-1 cells exhibited a significantly higher level of M-CSF receptor expression than U937 cells. Bone marrow from patients with AML-M2 t(8;21) also exhibited a higher level of expression of M-CSF receptor compared with normal controls. The upregulation of M-CSF receptor expression by AML1-ETO may contribute to the development of a leukemic state in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mouse mammary tumor virus (MMTV) promoter is regulated by steroid hormones through a hormone-responsive region that is organized in a positioned nucleosome. Hormone induction leads to a structural change of this nucleosome which makes its DNA more sensitive to cleavage by DNase I and enables simultaneous binding of all relevant transcription factors. In cells carrying either episomal or chromosomally integrated MMTV promoters, moderate acetylation of core histones, generated by treatment with low concentrations of the histone deacetylase inhibitors sodium butyrate or trichostatin A, enhances transcription from the MMTV promoter in the absence of hormone and potentiates transactivation by either glucocorticoids or progestins. At higher concentrations, histone deacetylase inhibitors reduce basal and hormone induced MMTV transcription. Inducing inhibitor concentrations lead to the same type of nucleosomal DNase I hypersensitivity as hormone treatment, suggesting that moderate acetylation of core histone activates the MMTV promoter by mechanisms involving chromatin remodeling similar to that generated by the inducing hormones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular analysis of complex modular structures, such as promoter regions or multi-domain proteins, often requires the creation of families of experimental DNA constructs having altered composition, order, or spacing of individual modules. Generally, creation of every individual construct of such a family uses a specific combination of restriction sites. However, convenient sites are not always available and the alternatives, such as chemical resynthesis of the experimental constructs or engineering of different restriction sites onto the ends of DNA fragments, are costly and time consuming. A general cloning strategy (nucleic acid ordered assembly with directionality, NOMAD; WWW resource locator http:@Lmb1.bios.uic.edu/NOMAD/NOMAD.htm l) is proposed that overcomes these limitations. Use of NOMAD ensures that the production of experimental constructs is no longer the rate-limiting step in applications that require combinatorial rearrangement of DNA fragments. NOMAD manipulates DNA fragments in the form of "modules" having a standardized cohesive end structure. Specially designed "assembly vectors" allow for sequential and directional insertion of any number of modules in an arbitrary predetermined order, using the ability of type IIS restriction enzymes to cut DNA outside of their recognition sequences. Studies of regulatory regions in DNA, such as promoters, replication origins, and RNA processing signals, construction of chimeric proteins, and creation of new cloning vehicles, are among the applications that will benefit from using NOMAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The promoters recognized by sigma 70, the primary sigma of Escherichia coli, consist of two highly conserved hexamers located at -10 and -35 bp from the start point of transcription, separated by a preferred spacing of 17 bp. sigma factors have two distinct DNA binding domains that recognize the two hexamer sequences. However, the component of RNA polymerase recognizing the length of the spacing between hexamers has not been determined. Using an equilibrium DNA binding competition assay, we demonstrate that a polypeptide of sigma 70 carrying both DNA binding domains is very sensitive to promoter spacing, whereas a sigma 70 polypeptide with only one DNA binding domain is not. Furthermore, a mutant sigma, selected for increasing transcription of the minimal lac promoter (18-bp spacer), has an altered response to promoter spacing in vivo and in vitro. Our data support the idea that sigma makes simultaneous, productive contacts at both the -10 and the -35 regions of the promoter and discerns the spacing between these conserved regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In studies of variants of the P(ant) promoter of bacteriophage P22, the Arc protein was found not only to slow the rate at which RNA polymerase forms open complexes but also to accelerate the rate at which the enzyme clears the promoter. These dual activities permit Arc, bound at a single operator subsite, to act as an activator or as a repressor of different promoter variants. For example, Arc activates a P(ant) variant for which promoter clearance is rate limiting in the presence and absence of Arc but represses a closely related variant for which open-complex formation becomes rate limiting in the presence of Arc. The acceleration of promoter clearance by Arc requires occupancy of the operator subsite proximal to the -35 region and is diminished when Arc bears a mutation in Arg-23, a residue that makes a DNA-backbone contact in the operator complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulatory protein p4 from Bacillus subtilis phage phi 29 represses the strong viral A2c promoter (PA2c) by preventing promoter clearance; it allows RNA polymerase to bind to the promoter and form an initiated complex, but the elongation step is not reached. Protein p4 binds at PA2c immediately upstream from RNA polymerase; repression involves a contact between both proteins that holds the RNA polymerase at the promoter. This contact is held mainly through p4 residue Arg120, which is also required for activation of the phi 29 late A3 promoter. We have investigated which region of RNA polymerase contacts protein p4 at PA2c. Promoter repression was impaired when a reconstituted RNA polymerase lacking the 15 C-terminal residues of the alpha subunit C-terminal domain was used; this polymerase was otherwise competent for transcription. Binding cooperativity assays indicated that protein p4 cannot interact with this mutant RNA polymerase at PA2c. Protein p4 could form a complex at PA2c with purified wild-type alpha subunit, but not with a deletion mutant lacking the 15 C-terminal residues. Our results indicate that protein p4 represses PA2c by interacting with the C-terminal domain of the alpha subunit of RNA polymerase. Therefore, this domain of the alpha subunit can receive regulatory signals not only from transcriptional activators, but from repressors also.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin promoter factor 1 (IPF1), a member of the homeodomain protein family, serves an early role in pancreas formation, as evidenced by the lack of pancreas formation in mice carrying a targeted disruption of the IPF1 gene [Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. (1994) Nature (London) 371, 606-609]. In adults, IPF1 expression is restricted to the beta-cells in the islets of Langerhans. We report here that IPF1 induces expression of a subset of beta-cell-specific genes (insulin and islet amyloid polypeptide) when ectopically expressed in clones of transformed pancreatic islet alpha-cells. In contrast, expression of IPF1 in rat embryo fibroblasts factor failed to induce insulin and islet amyloid polypeptide expression. This is most likely due to the lack of at least one other essential insulin gene transcription factor, the basic helix-loop-helix protein Beta 2/NeuroD, which is expressed in both alpha- and beta-cells. We conclude that IPF1 is a potent transcriptional activator of endogenous insulin genes in non-beta islet cells, which suggests an important role of IPF1 in beta-cell maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aldose reductase (EC 1.1.1.21) catalyzes the NADPH-mediated conversion of glucose to sorbitol. The hyperglycemia of diabetes increases sorbitol production primarily through substrate availability and is thought to contribute to the pathogenesis of many diabetic complications. Increased sorbitol production can also occur at normoglycemic levels via rapid increases in aldose reductase transcription and expression, which have been shown to occur upon exposure of many cell types to hyperosmotic conditions. The induction of aldose reductase transcription and the accumulation of sorbitol, an organic osmolyte, have been shown to be part of the physiological osmoregulatory mechanism whereby renal tubular cells adjust to the intraluminal hyperosmolality during urinary concentration. Previously, to explore the mechanism regulating aldose reductase levels, we partially characterized the human aldose reductase gene promoter present in a 4.2-kb fragment upstream of the transcription initiation start site. A fragment (-192 to +31 bp) was shown to contain several elements that control the basal expression of the enzyme. In this study, we examined the entire 4.2-kb human AR gene promoter fragment by deletion mutagenesis and transfection studies for the presence of osmotic response enhancer elements. An 11-bp nucleotide sequence (TGGAAAATTAC) was located 3.7 kb upstream of the transcription initiation site that mediates hypertonicity-responsive enhancer activity. This osmotic response element (ORE) increased the expression of the chloramphenicol acetyltransferase reporter gene product 2-fold in transfected HepG2 cells exposed to hypertonic NaCl media as compared with isoosmotic media. A more distal homologous sequence is also described; however, this sequence has no osmotic enhancer activity in transfected cells. Specific ORE mutant constructs, gel shift, and DNA fragment competition studies confirm the nature of the element and identify specific nucleotides essential for enhancer activity. A plasmid construct containing three repeat OREs and a heterologous promoter increased expression 8-fold in isoosmotic media and an additional 4-fold when the transfected cells are subjected to hyperosmotic stress (total approximately 30-fold). These findings will permit future studies to identify the transcription factors involved in the normal regulatory response mechanism to hypertonicity and to identify whether and how this response is altered in a variety of pathologic states, including diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vaccinia virus early transcription factor (VETF), a heterodimeric protein composed of 82- and 70-kDa subunits, interacts with viral early promoters at both a sequence-specific core region upstream and a sequence-independent region downstream of the RNA start site. To determine the VETF subunit-promoter interactions, 32P-labeled DNA targets were chemically synthesized with uniquely positioned phosphorothioates to which azidophenacyl bromide moieties were coupled. After incubating the derivatized promoter with VETF and exposing the complex to 302-nm light, the protein was denatured and the individual subunits with or without covalently bound DNA were isolated with specific antiserum and analyzed by SDS/polyacrylamide gel electrophoresis. Using a set of 26 duplex probes, with uniquely positioned aryl azide moieties on the coding or template strands, we found that the 82-kDa subunit interacted primarily with the core region of the promoter, whereas the 70-kDa subunit interacted with the downstream region. Nucleotide substitutions in the core region that downregulate transcription affected the binding of both subunits: the 82-kDa subunit no longer exhibited specificity for upstream regions of the promoter but also bound to downstream regions, whereas the binding of the 70-kDa subunit was abolished even though the mutations were far upstream of its binding site. These results suggested mechanisms by which the interaction of the 82-kDa subunit with the core sequence directs binding of the 70-kDa subunit to DNA downstream.