377 resultados para muon
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. IMB construction image. Photomultiplier tubes (PMT's) about to be lowered into tank. Tank still empty of water.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. IMB construction image. Underwater view along bottom of "pool" showing PMT's [photomultiplier tubes] on bottom and opposite wall.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. IMB construction image. Diver checking connection to PMT [photomultiplier tubes] housing.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. IMB construction image. Scuba diver shown in IMB pool. Upgraded version of 8-inch PMT's [photomultiplier tubes] shown with wave-shifter plates.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. Computer display of PMT [photomultiplier tubes] hits from a muon produced by a neutrino interaction in IMB detector. View from top.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. Computer display of PMT [photomultiplier tubes] hits from a muon produced by a neutrino interaction in IMB detector. Fish-eye view
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. Computer display of PMT [photomultiplier tubes] hits from a muon produced by a neutrino interaction in IMB detector. Cylinder plot
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. Computer display of PMT [photomultiplier tubes] hits from a muon produced by a neutrino interaction in IMB detector. Sphere plot
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. The blue giant star Sanduleak in the large magellenic cloud exploded 170,000 years ago giving off a pulse of neutrinos that arrived at earth on 23 February 1987. For a few weeks it was as bright as 100 million suns.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. One of eight events recorded by IMB during the few seconds that the neutrino pulse from SN1987a passed through the detector. View looking into the south wall.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. PMT [photomultiplier tubes] hits from SN [supernovae] event projected onto sphere.
Resumo:
Eleven papers dealing with photon beams from the accelerator, use of hydrogen bubble chambers and spark chambers, a storage ring for 10-Bev muons, muon beams and -p scattering experiments, mass analysis of highenergy accelerator beams, the search for intermediate bosons and heavy leptons, particle yields arising from decay of short-lived intermediate particles, and conjectures on the effects of Regge poles on Drell processes are included. Separate abstracts were prepared for the eleven papers. (D.C.W.).
Resumo:
Molecular nanomagnets are spin clusters whose topology and magnetic interactions can be modulated at the level of the chemical synthesis. They are formed by a small number of transition metal ions coupled by the Heisenberg's exchange interactions. Each cluster is magnetically isolated from its neighbors by organic ligands, making each unit not interacting with the others. Therefore, we can investigate the magnetic properties of an isolated molecular nanomagnet by bulk measurements. The present thesis has been mostly devoted to the experimental investigation of the magnetic properties and spin dynamics of different classes of antiferromagnetic (AF) molecular rings. This study has been exploiting various techniques of investigations, such as Nuclear Magnetic Resonance (NMR), muon spin relaxation (muSR) and SQUiD magnetometry. We investigate the magnetic properties and the phonon-induced relaxation dynamics of the first regular Cr9 antiferromagnetic (AF) ring, which represents a prototype frustrated AF ring. The magnetically-open AF rings like Cr8Cd are model systems for the study of the microscopic magnetic behaviour of finite AF Heisenberg chains. In this type of system the different magnetic behaviour depends length and on the parity of the chain (odd or even). In order to study the local spin densities on the Cr sites, the Cr-NMR spectra was collected at low temperature. The experimental result confirm the theoretical predictions for the spin configuration. Finally, the study of Dy6, the first rare-earth based ring that has been ever synthesized, has been performed by AC-SQuID and muSR measurements. We found that the dynamics is characterized by more than one characteristic correlation time, whose values depend strongly on the applied field.
Resumo:
We have obtained total and differential cross sections for the strangeness changing charged current weak reaction ν L + p → Λ(Σ0) + L+ using standard dipole form factors, where L stands for an electron, muon, or tau lepton, and L + stands for an positron, anti-muon or anti-tau lepton. We calculated these reactions from near threshold few hundred MeV to 8 GeV of incoming neutrino energy and obtained the contributions of the various form factors to the total and differential cross sections. We did this in support of possible experiments which might be carried out by the MINERνA collaboration at Fermilab. The calculation is phenomenologically based and makes use of SU(3) relations to obtain the standard vector current form factors and data from Λ beta decay to obtain the axial current form factor. We also made estimates for the contributions of the pseudoscalar form factor and for the F E and FS form factors to the total and differential cross sections. We discuss our results and consider under what circumstances we might extract the various form factors. In particular we wish to test the SU(3) assumptions made in determining all the form factors over a range of q2 values. Recently new form factors were obtained from recoil proton measurements in electron-proton electromagnetic scattering at Jefferson Lab. We thus calculated the contributions of the individual form factors to the total and differential cross sections for this new set of form factors. We found that the differential and total cross sections for Λ production change only slightly between the two sets of form factors but that the differential and total cross sections change substantially for Σ 0 production. We discuss the possibility of distinguishing between the two cases for the experiments planned by the MINERνA Collaboration. We also undertook the calculation for the inverse reaction e − + p → Λ + νe for a polarized outgoing Λ which might be performed at Jefferson Lab, and provided additional analysis of the contributions of the individual form factors to the differential cross sections for this case. ^
Resumo:
For the first time, the Z0 boson angular distribution in the center-of-momentum frame is measured in proton-proton collisions at [special characters omitted] = 7 TeV at the CERN LHC. The data sample, recorded with the CMS detector, corresponds to an integrated luminosity of approximately 36 pb–1 . Events in which there is a Z0 and at least one jet, with a jet transverse momentum threshold of 20 GeV and absolute jet rapidity less than 2.4, are selected for the analysis. Only the Z0's muon decay channel is studied. Within experimental and theoretical uncertainties, the measured angular distribution is in agreement with next-to-leading order perturbative QCD predictions.