987 resultados para multi-turn injection
Resumo:
A novel Glass Fibre Reinforced Polymer (GFRP) sandwich panel was developed by an Australian manufacturer for civil engineering applications. This research is motivated by the new applications of GFRP sandwich structures in civil engineering such as slab, beam, girder and sleeper. An optimisation methodology is developed in this work to enhance the design of GFRP sandwich beams. The design of single and glue laminated GFRP sandwich beam were conducted by using numerical optimisation. The numerical multi-objective optimisation considered a design two objectives simultaneously. These objectives are cost and mass. The numerical optimisation uses the Adaptive Range Multi-objective Genetic Algorithm (ARMOGA) and Finite Element (FE) method. Trade-offs between objectives was found during the optimisation process. Multi-objective optimisation shows a core to skin mass ratio equal to 3.68 for the single sandwich beam cross section optimisation and it showed that the optimum core to skin thickness ratio is 11.0.
Resumo:
Recent advances in computational geodynamics are applied to explore the link between Earth’s heat, its chemistry and its mechanical behavior. Computational thermal-mechanical solutions are now allowing us to understand Earth patterns by solving the basic physics of heat transfer. This approach is currently used to solve basic convection patterns of terrestrial planets. Applying the same methodology to smaller scales delivers promising similarities between observed and predicted structures which are often the site of mineral deposits. The new approach involves a fully coupled solution to the energy, momentum and continuity equations of the system at all scales, allowing the prediction of fractures, shear zones and other typical geological patterns out of a randomly perturbed initial state. The results of this approach are linking a global geodynamic mechanical framework over regional-scale mineral deposits down to the underlying micro-scale processes. Ongoing work includes the challenge of incorporating chemistry into the formulation.
Resumo:
In the decision-making of multi-area ATC (Available Transfer Capacity) in electricity market environment, the existing resources of transmission network should be optimally dispatched and coordinately employed on the premise that the secure system operation is maintained and risk associated is controllable. The non-sequential Monte Carlo simulation is used to determine the ATC probability density distribution of specified areas under the influence of several uncertainty factors, based on which, a coordinated probabilistic optimal decision-making model with the maximal risk benefit as its objective is developed for multi-area ATC. The NSGA-II is applied to calculate the ATC of each area, which considers the risk cost caused by relevant uncertainty factors and the synchronous coordination among areas. The essential characteristics of the developed model and the employed algorithm are illustrated by the example of IEEE 118-bus test system. Simulative result shows that, the risk of multi-area ATC decision-making is influenced by the uncertainties in power system operation and the relative importance degrees of different areas.
Resumo:
Particulate matter research is essential because of the well known significant adverse effects of aerosol particles on human health and the environment. In particular, identification of the origin or sources of particulate matter emissions is of paramount importance in assisting efforts to control and reduce air pollution in the atmosphere. This thesis aims to: identify the sources of particulate matter; compare pollution conditions at urban, rural and roadside receptor sites; combine information about the sources with meteorological conditions at the sites to locate the emission sources; compare sources based on particle size or mass; and ultimately, provide the basis for control and reduction in particulate matter concentrations in the atmosphere. To achieve these objectives, data was obtained from assorted local and international receptor sites over long sampling periods. The samples were analysed using Ion Beam Analysis and Scanning Mobility Particle Sizer methods to measure the particle mass with chemical composition and the particle size distribution, respectively. Advanced data analysis techniques were employed to derive information from large, complex data sets. Multi-Criteria Decision Making (MCDM), a ranking method, drew on data variability to examine the overall trends, and provided the rank ordering of the sites and years that sampling was conducted. Coupled with the receptor model Positive Matrix Factorisation (PMF), the pollution emission sources were identified and meaningful information pertinent to the prioritisation of control and reduction strategies was obtained. This thesis is presented in the thesis by publication format. It includes four refereed papers which together demonstrate a novel combination of data analysis techniques that enabled particulate matter sources to be identified and sampling site/year ranked. The strength of this source identification process was corroborated when the analysis procedure was expanded to encompass multiple receptor sites. Initially applied to identify the contributing sources at roadside and suburban sites in Brisbane, the technique was subsequently applied to three receptor sites (roadside, urban and rural) located in Hong Kong. The comparable results from these international and national sites over several sampling periods indicated similarities in source contributions between receptor site-types, irrespective of global location and suggested the need to apply these methods to air pollution investigations worldwide. Furthermore, an investigation into particle size distribution data was conducted to deduce the sources of aerosol emissions based on particle size and elemental composition. Considering the adverse effects on human health caused by small-sized particles, knowledge of particle size distribution and their elemental composition provides a different perspective on the pollution problem. This thesis clearly illustrates that the application of an innovative combination of advanced data interpretation methods to identify particulate matter sources and rank sampling sites/years provides the basis for the prioritisation of future air pollution control measures. Moreover, this study contributes significantly to knowledge based on chemical composition of airborne particulate matter in Brisbane, Australia and on the identity and plausible locations of the contributing sources. Such novel source apportionment and ranking procedures are ultimately applicable to environmental investigations worldwide.
Resumo:
A new optimal control model of the interactions between a growing tumour and the host immune system along with an immunotherapy treatment strategy is presented. The model is based on an ordinary differential equation model of interactions between the growing tu- mour and the natural killer, cytotoxic T lymphocyte and dendritic cells of the host immune system, extended through the addition of a control function representing the application of a dendritic cell treat- ment to the system. The numerical solution of this model, obtained from a multi species Runge–Kutta forward-backward sweep scheme, is described. We investigate the effects of varying the maximum al- lowed amount of dendritic cell vaccine administered to the system and find that control of the tumour cell population is best effected via a high initial vaccine level, followed by reduced treatment and finally cessation of treatment. We also found that increasing the strength of the dendritic cell vaccine causes an increase in the number of natural killer cells and lymphocytes, which in turn reduces the growth of the tumour.
Resumo:
Considerate amount of research has proposed optimization-based approaches employing various vibration parameters for structural damage diagnosis. The damage detection by these methods is in fact a result of updating the analytical structural model in line with the current physical model. The feasibility of these approaches has been proven. But most of the verification has been done on simple structures, such as beams or plates. In the application on a complex structure, like steel truss bridges, a traditional optimization process will cost massive computational resources and lengthy convergence. This study presents a multi-layer genetic algorithm (ML-GA) to overcome the problem. Unlike the tedious convergence process in a conventional damage optimization process, in each layer, the proposed algorithm divides the GA’s population into groups with a less number of damage candidates; then, the converged population in each group evolves as an initial population of the next layer, where the groups merge to larger groups. In a damage detection process featuring ML-GA, as parallel computation can be implemented, the optimization performance and computational efficiency can be enhanced. In order to assess the proposed algorithm, the modal strain energy correlation (MSEC) has been considered as the objective function. Several damage scenarios of a complex steel truss bridge’s finite element model have been employed to evaluate the effectiveness and performance of ML-GA, against a conventional GA. In both single- and multiple damage scenarios, the analytical and experimental study shows that the MSEC index has achieved excellent damage indication and efficiency using the proposed ML-GA, whereas the conventional GA only converges at a local solution.
Resumo:
Being able to innovate has become a critical capability for many contemporary organizations in an effort to sustain their operations in the long run. However, existing innovation models that attempt to guide organizations emphasize different aspects of innovation (e.g., products, services or business models), different stages of innovation (e.g., ideation, implementation or operation) or different skills (e.g., development or crowdsourcing) that are necessary to innovate, in turn creating isolated pockets of understanding about different aspects of innovation. In order to yield more predictable innovation outcomes organizations need to understand what exactly they need to focus on, what capabilities they need to have and what is necessary in order to take an idea to market. This paper aims at constructing a framework for innovation that contributes to this understanding. We will focus on a number of different stages in the innovation process and highlight different types and levels of organizational, technological, individual and process capabilities required to manage the organizational innovation process. Our work offers a comprehensive conceptualization of innovation as a multi-level process model, and provides a range of implications for further empirical and theoretical examination.
Resumo:
Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.
Resumo:
In this paper we analyse the effects of highway traffic flow parameters like vehicle arrival rate and density on the performance of Amplify and Forward (AF) cooperative vehicular networks along a multi-lane highway under free flow state. We derive analytical expressions for connectivity performance and verify them with Monte-Carlo simulations. When AF cooperative relaying is employed together with Maximum Ratio Combining (MRC) at the receivers the average route error rate shows 10-20 fold improvement compared to direct communication. A 4-8 fold increase in maximum number of traversable hops can also be observed at different vehicle densities when AF cooperative communication is used to strengthen communication routes. However the theorical upper bound of maximum number of hops promises higher performance gains.
Resumo:
Business process management systems (BPMS) belong to a class of enterprise information systems that are characterized by the dependence on explicitly modeled process logic. Through the process logic, it is relatively easy to manage explicitly the routing and allocation of work items along a business process through the system. Inspired by the DeLone and McLean framework, we theorize that these process-aware system features are important attributes of system quality, which in turn will elevate key user evaluations such as perceived usefulness, and usage satisfaction. We examine this theoretical model using data collected from four different, mostly mature BPM system projects. Our findings validate the importance of input quality as well as allocation and routing attributes as antecedents of system quality, which, in turn, determines both usefulness and satisfaction with the system. We further demonstrate how service quality and workflow dependency are significant precursors to perceived usefulness. Our results suggest the appropriateness of a multi-dimensional conception of system quality for future research, and provide important design-oriented advice for the design and configuration of BPMSs.
Resumo:
Pacific Rim Real Estate Society has conducted four property case competitions from 2009 to 2012. The competition provides opportunities for undergraduate students to present their proposal on a given case study. All students were locked down with their four team members for five hours without external help to ensure a level playing field across participants. Students prepared their presentation and defended their arguments in front of experts in property industry and academia. The aim of this paper is reflecting on the feedback received from stakeholders involved in the case competition. Besides exploring what students have gained from the competitions, this paper provides an insight on the opportunities and challenges for the new format of competition to be introduced in 2013. Over the last four competitions, there were three universities participated in all the four consecutive events, four universities partook in two events and another four universities only competed once. Some universities had a great advantage by having previous experiences by participating in similar international business competitions. Findings show that the students have benefited greatly from the event including improving their ability in problem solving and other non-technical skills. Despite the aforementioned benefits, the PRRES closed-book case competition is proven not viable thus future competition needs to minimise the travel and logistic cost.
Resumo:
Classifier selection is a problem encountered by multi-biometric systems that aim to improve performance through fusion of decisions. A particular decision fusion architecture that combines multiple instances (n classifiers) and multiple samples (m attempts at each classifier) has been proposed in previous work to achieve controlled trade-off between false alarms and false rejects. Although analysis on text-dependent speaker verification has demonstrated better performance for fusion of decisions with favourable dependence compared to statistically independent decisions, the performance is not always optimal. Given a pool of instances, best performance with this architecture is obtained for certain combination of instances. Heuristic rules and diversity measures have been commonly used for classifier selection but it is shown that optimal performance is achieved for the `best combination performance' rule. As the search complexity for this rule increases exponentially with the addition of classifiers, a measure - the sequential error ratio (SER) - is proposed in this work that is specifically adapted to the characteristics of sequential fusion architecture. The proposed measure can be used to select a classifier that is most likely to produce a correct decision at each stage. Error rates for fusion of text-dependent HMM based speaker models using SER are compared with other classifier selection methodologies. SER is shown to achieve near optimal performance for sequential fusion of multiple instances with or without the use of multiple samples. The methodology applies to multiple speech utterances for telephone or internet based access control and to other systems such as multiple finger print and multiple handwriting sample based identity verification systems.
Resumo:
Predicate encryption is a new primitive that supports flexible control over access to encrypted data. We study predicate encryption systems, evaluating a wide class of predicates. Our systems are more expressive than the existing attribute-hiding systems in the sense that the proposed constructions support not only all existing predicate evaluations but also arbitrary conjunctions and disjunctions of comparison and subset queries. Toward our goal, we propose encryption schemes supporting multi-inner-product predicate and provide formal security analysis. We show how to apply the proposed schemes to achieve all those predicate evaluations.
Resumo:
Needs assessment strategies can facilitate prioritisation of resources. To develop a needs assessment tool for use with advanced cancer patients and caregivers, to prompt early intervation. A convenience sample of 103 health professionals viewed three videotaped consultations involving a simulated patient, his/her caregiver and a health professional, completed the Palliative Care Needs Assessment Tool (PC-NAT) and provided feedback on clarity, content and acceptability of the PC-NAT. Face and content validity, acceptability and feasibility of the PC-NAT were confirmed. Kappa scores indicated adequate inter-rater reliability for the majority of domains; the patient spirituality domain and the caregiver physical and family and relationship domains had low reliability. The PC-NAT can be used by health professionals with a range of clinical expertise to identify individuals' needs, thereby enabling early intervention. Further psychometric testing and an evaluation to assess the impact of the systematic use of the PC-NAT on quality of life, unmet needs and service utilisation of patients and caregivers are underway.