994 resultados para multi-quasi-elliptic operators
Resumo:
This paper proposes the concept of multi-asynchronous-channel for Petri nets. Petri nets extended with multi-asynchronous-channels and time-domains support the specification of distributed controllers, where each controller has a synchronous execution but the global system is asynchronous (globally-asynchronous locally-synchronous systems). Each multi-asynchronous-channel specify the interaction between two or more distributed controllers. These channels, together with the time-domain concept, ensure the creation of network-independent models to support implementations using heterogeneous communication networks. The created models support not only the systems documentation but also their validation and implementation through simulation tools, verification tools, and automatic code generators. An application example illustrates the use of a Petri net class extended with the proposed channels. © 2015 IEEE.
Resumo:
In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriate for the load capacity installed. At the present time there are no standard specimen's geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriate for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress distributions on the loading directions are uniform and maximum with two limit phase shift loading conditions (delta = 0 degrees and (delta = 180 degrees). Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS) method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests
Resumo:
This paper proposes an implementation, based on a multi-agent system, of a management system for automated negotiation of electricity allocation for charging electric vehicles (EVs) and simulates its performance. The widespread existence of charging infrastructures capable of autonomous operation is recognised as a major driver towards the mass adoption of EVs by mobility consumers. Eventually, conflicting requirements from both power grid and EV owners require automated middleman aggregator agents to intermediate all operations, for example, bidding and negotiation, between these parts. Multi-agent systems are designed to provide distributed, modular, coordinated and collaborative management systems; therefore, they seem suitable to address the management of such complex charging infrastructures. Our solution consists in the implementation of virtual agents to be integrated into the management software of a charging infrastructure. We start by modelling the multi-agent architecture using a federated, hierarchical layers setup and as well as the agents' behaviours and interactions. Each of these layers comprises several components, for example, data bases, decision-making and auction mechanisms. The implementation of multi-agent platform and auctions rules, and of models for battery dynamics, is also addressed. Four scenarios were predefined to assess the management system performance under real usage conditions, considering different types of profiles for EVs owners', different infrastructure configurations and usage and different loads on the utility grid (where real data from the concession holder of the Portuguese electricity transmission grid is used). Simulations carried with the four scenarios validate the performance of the modelled system while complying with all the requirements. Although all of these have been performed for one charging station alone, a multi-agent design may in the future be used for the higher level problem of distributing energy among charging stations. Copyright (c) 2014 John Wiley & Sons, Ltd.
Resumo:
Synthetic dyes are xenobiotic compounds that are being increasingly used in several industries, with special emphasis in the paper, textile and leather industries. Over 100,000 commercial dyes exist today and more than 7 × 105 tons of dyestuff is produced annually, of which 1–1.5 × 105 tons is released into the wastewaters (Rai et al in Crit Rev Environ Sci Tecnhol 35:219–238, 2005). Among these, azo dyes, characterized by the presence of one or more azo groups (–N=N–), and anthraquinonic dyes represent the largest and most versatile groups.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Sistemas Autónomos
Resumo:
O livro que agora se apresenta decorre do trabalho desenvolvido num ciclo de seminários realizados no ano lectivio de 2008/09 e pretende explicitar e sistematizar alguns elementos em torno das principais questões organizadoras: o quê investigar em educação? Como se investiga em educação? Para quê investigar em educação? Porém, não são respostas definitivas ou acabadas que se pretendem alcançar, nem tão pouco podemos escamotear que se tratam de respostas situadas em função dos percursos formativos e profissionais dos investigadores, mestrandos e doutorandos envolvidos nos seminários. Procuramos, acima de tudo, explicitar o posicionamento que, no nosso caso, tem vindo a ser privilegiado em termos de trabalho científico no campo da investigação em educação
Resumo:
Thesis submitted to Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa in partial fulfilment of the requirements for the degree of Master in Computer Science
Resumo:
Os consumidores finais são vistos, no novo paradigma da operação das redes elétricas, como intervenientes ativos com capacidade para gerir os seus recursos energéticos, nomeadamente as cargas, as unidades de produção, os veículos elétricos e a participação em eventos de Demand Response. Tem sido evidente um aumento do consumo de energia, sendo que o setor residencial representa uma importante parte do consumo global dos países desenvolvidos. Para que a participação ativa dos consumidores seja possível, várias abordagens têm vindo a ser propostas, com ênfase nas Smart Grids e nas Microgrids. Diversos sistemas têm sido propostos e desenvolvidos com o intuito de tornar a operação dos sistemas elétricos mais flexível. Neste contexto, os sistemas de gestão de instalações domésticas apresentam-se como um elemento fulcral para a participação ativa dos consumidores na gestão energética, permitindo aos operadores de sistema coordenarem a produção mas também a procura. No entanto, é importante identificar as vantagens da implementação e uso de sistemas de gestão de energia elétrica para os consumidores finais. Nesta dissertação são propostas metodologias de apoio ao consumidor doméstico na gestão dos recursos energéticos existentes e a implementação das mesmas na plataforma de simulação de um sistema de gestão de energia desenvolvido para consumidores domésticos, o SCADA House Intelligent Management (SHIM). Para tal, foi desenvolvida uma interface que permite a simulação em laboratório do sistema de gestão desenvolvido. Adicionalmente, o SHIM foi incluído no simulador Multi-Agent Smart Grid Simulation Plataform (MASGriP) permitindo a simulação de cenários considerando diferentes agentes. Ao nível das metodologias desenvolvidas são propostos diferentes algoritmos de gestão dos recursos energéticos existentes numa habitação, considerando utilizadores com diferentes tipos de recursos (cargas; cargas e veículos elétricos; cargas, veículos elétricos e microgeração). Adicionalmente é proposto um método de gestão dinâmica das cargas para eventos de Demand Response de longa duração, considerando as características técnicas dos equipamentos. Nesta dissertação são apresentados cinco casos de estudos em que cada um deles tem diferentes cenários de simulação. Estes casos de estudos são importantes para verificar a viabilidade da implementação das metodologias propostas para o SHIM. Adicionalmente são apresentados na dissertação perfis reais dos vários recursos energéticos e de consumidores domésticos que são, posteriormente, utilizados para o desenvolvimento dos casos de estudo e aplicação das metodologias.
Resumo:
This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle- To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow calculation is included in the metaheuristics approach to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
Recent changes in electricity markets (EMs) have been potentiating the globalization of distributed generation. With distributed generation the number of players acting in the EMs and connected to the main grid has grown, increasing the market complexity. Multi-agent simulation arises as an interesting way of analysing players’ behaviour and interactions, namely coalitions of players, as well as their effects on the market. MASCEM was developed to allow studying the market operation of several different players and MASGriP is being developed to allow the simulation of the micro and smart grid concepts in very different scenarios This paper presents a methodology based on artificial intelligence techniques (AI) for the management of a micro grid. The use of fuzzy logic is proposed for the analysis of the agent consumption elasticity, while a case based reasoning, used to predict agents’ reaction to price changes, is an interesting tool for the micro grid operator.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors research group has developed three multi-agent systems: MASCEM, which simulates the electricity markets; ALBidS that works as a decision support system for market players; and MASGriP, which simulates the internal operations of smart grids. To take better advantage of these systems, their integration is mandatory. For this reason, is proposed the development of an upper-ontology which allows an easier cooperation and adequate communication between them. Additionally, the concepts and rules defined by this ontology can be expanded and complemented by the needs of other simulation and real systems in the same areas as the mentioned systems. Each system’s particular ontology must be extended from this top-level ontology.
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, performed so that the competitiveness could be increased, but with exponential implications in the increase of the complexity and unpredictability in those markets’ scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behavior. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This paper presents the Multi-Agent System for Competitive Electricity Markets (MASCEM) – a simulator based on multi-agent technology that provides a realistic platform to simulate electricity markets, the numerous negotiation opportunities and the participating entities.
Resumo:
This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring process produced. Currently, lots of information concerning electricity markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge to define realistic scenarios, which are essential for understanding and forecast electricity markets behavior. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of electricity markets and of the behaviour of the involved entities. In this paper an adaptable tool capable of downloading, parsing and storing data from market operators’ websites is presented, assuring constant updating and reliability of the stored data.