898 resultados para multi-class classification
Resumo:
Most of the modem developments with classification trees are aimed at improving their predictive capacity. This article considers a curiously neglected aspect of classification trees, namely the reliability of predictions that come from a given classification tree. In the sense that a node of a tree represents a point in the predictor space in the limit, the aim of this article is the development of localized assessment of the reliability of prediction rules. A classification tree may be used either to provide a probability forecast, where for each node the membership probabilities for each class constitutes the prediction, or a true classification where each new observation is predictively assigned to a unique class. Correspondingly, two types of reliability measure will be derived-namely, prediction reliability and classification reliability. We use bootstrapping methods as the main tool to construct these measures. We also provide a suite of graphical displays by which they may be easily appreciated. In addition to providing some estimate of the reliability of specific forecasts of each type, these measures can also be used to guide future data collection to improve the effectiveness of the tree model. The motivating example we give has a binary response, namely the presence or absence of a species of Eucalypt, Eucalyptus cloeziana, at a given sampling location in response to a suite of environmental covariates, (although the methods are not restricted to binary response data).
Resumo:
We introduce a new second-order method of texture analysis called Adaptive Multi-Scale Grey Level Co-occurrence Matrix (AMSGLCM), based on the well-known Grey Level Co-occurrence Matrix (GLCM) method. The method deviates significantly from GLCM in that features are extracted, not via a fixed 2D weighting function of co-occurrence matrix elements, but by a variable summation of matrix elements in 3D localized neighborhoods. We subsequently present a new methodology for extracting optimized, highly discriminant features from these localized areas using adaptive Gaussian weighting functions. Genetic Algorithm (GA) optimization is used to produce a set of features whose classification worth is evaluated by discriminatory power and feature correlation considerations. We critically appraised the performance of our method and GLCM in pairwise classification of images from visually similar texture classes, captured from Markov Random Field (MRF) synthesized, natural, and biological origins. In these cross-validated classification trials, our method demonstrated significant benefits over GLCM, including increased feature discriminatory power, automatic feature adaptability, and significantly improved classification performance.
Resumo:
Latent class and genetic analyses were used to identify subgroups of migraine sufferers in a community sample of 6,265 Australian twins (55% female) aged 25-36 who had completed an interview based on International Headache Society UHS) criteria. Consistent with prevalence rates from other population-based studies, 703 (20%) female and 250 (9%) male twins satisfied the IHS criteria for migraine without aura (MO), and of these, 432 (13%) female and 166 (6%) male twins satisfied the criteria for migraine with aura (MA) as indicated by visual symptoms. Latent class analysis (LCA) of IHS symptoms identified three major symptomatic classes, representing 1) a mild form of recurrent nonmigrainous headache, 2) a moderately severe form of migraine, typically without visual aura symptoms (although 40% of individuals in this class were positive for aura), and 3) a severe form of migraine typically with visual aura symptoms (although 24% of individuals were negative for aura). Using the LCA classification, many more individuals were considered affected to some degree than when using IHS criteria (35% vs. 13%). Furthermore, genetic model fitting indicated a greater genetic contribution to migraine using the LCA classification (heritability, h(2) =0.40; 95% CI, 0.29-0.46) compared with the IHS classification (h(2)=0.36; 95% CI, 0.22-0.42). Exploratory latent class modeling, fitting up to 10 classes, did not identify classes corresponding to either the IHS MO or MA classification. Our data indicate the existence of a continuum of severity, with MA more severe but not etiologically distinct from MO. In searching for predisposing genes, we should therefore expect to find some genes that may underlie all major recurrent headache subtypes, with modifying genetic or environmental factors that may lead to differential expression of the liability for migraine. (C) 2004 Wiley-Liss, Inc.
Resumo:
This study represents the first application of multi-way calibration by N-PLS and multi-way curve resolution by PARAFAC to 2D diffusion-edited H-1 NMR spectra. The aim of the analysis was to evaluate the potential for quantification of lipoprotein main- and subtractions in human plasma samples. Multi-way N-PLS calibrations relating the methyl and methylene peaks of lipoprotein lipids to concentrations of the four main lipoprotein fractions as well as 11 subfractions were developed with high correlations (R = 0.75-0.98). Furthermore, a PARAFAC model with four chemically meaningful components was calculated from the 2D diffusion-edited spectra of the methylene peak of lipids. Although the four extracted PARAFAC components represent molecules of sizes that correspond to the four main fractions of lipoproteins, the corresponding concentrations of the four PARAFAC components proved not to be correlated to the reference concentrations of these four fractions in the plasma samples as determined by ultracentrifugation. These results indicate that NMR provides complementary information on the classification of lipoprotein fractions compared to ultracentrifugation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical Study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which tender the standard ZIP model inadequate. To account for the preponderance of zero counts and the inherent correlation of observations, a class of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using an expectation-maximization algorithm, whereas variance components are estimated via residual maximum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level ZIP model is then generalized to cope with a more complex correlation structure. Application to the analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the approach.
Resumo:
Male Nezara viridula produce sex pheromones from many independent single cells, each with a duct that opens onto the ventral abdominal surface. Despite the presence of along duct and an associated end complex (in the form of a cupule and microvillus saccule), the structural organization of the cells that comprise the gland conform to Class 1 epidermal gland cell classification : a single cell surrounds the entire secretory complex. Each cuticular cupule contains a central bed of filaments and opens into a narrow tubular ductule that leads from the base of the cupule through the epidermis to the cuticle to open externally as a pore. The cuticle of the cupule is continuous with that of the ductule and has the appearance of three layers, although the inner (middle) layer may be a gap formed during construction of the complex. In young adult males, just molted, the ultrastructure of the cells and their inclusions indicate that they are not active. The region of the cell that is distal to the abdominal cuticle is reduced and the proximal region, surrounding the duct, is enlarged when compared with sexually mature (3-4 weeks old) adult males. At maturity the pheromone cells are enlarged distally around the cupule, but are reduced to a narrow sleeve proximally, around the ductule. Two characteristic cell profiles are evident, based on the shape of the cupule and the organelle content. Type A shows a broad opening to the cupule, an abundance of mitochondria, and few vesicular bodies. Type B has an elongated, narrow, vase-like opening to the cupule, few mitochondria, and numerous vesicular bodies. Type B cells are smaller and more abundant than Type A. Distribution within the epidermal layer also differs. It is likely that the different types represent cells producing different secretion profiles. However, the secretions retained by the standard fixation protocol within mature cells of both types look similar and appear to collect as crystalline bodies within the lumen. This may represent a common storage mechanism.
Resumo:
Fast Classification (FC) networks were inspired by a biologically plausible mechanism for short term memory where learning occurs instantaneously. Both weights and the topology for an FC network are mapped directly from the training samples by using a prescriptive training scheme. Only two presentations of the training data are required to train an FC network. Compared with iterative learning algorithms such as Back-propagation (which may require many hundreds of presentations of the training data), the training of FC networks is extremely fast and learning convergence is always guaranteed. Thus FC networks may be suitable for applications where real-time classification is needed. In this paper, the FC networks are applied for the real-time extraction of gene expressions for Chlamydia microarray data. Both the classification performance and learning time of the FC networks are compared with the Multi-Layer Proceptron (MLP) networks and support-vector-machines (SVM) in the same classification task. The FC networks are shown to have extremely fast learning time and comparable classification accuracy.
Resumo:
The Java programming language supports concurrency. Concurrent programs are hard to test due to their inherent non-determinism. This paper presents a classification of concurrency failures that is based on a model of Java concurrency. The model and failure classification is used to justify coverage of synchronization primitives of concurrent components. This is achieved by constructing concurrency flow graphs for each method call. A producer-consumer monitor is used to demonstrate how the approach can be used to measure coverage of concurrency primitives and thereby assist in determining test sequences for deterministic execution.
Resumo:
A reliable perception of the real world is a key-feature for an autonomous vehicle and the Advanced Driver Assistance Systems (ADAS). Obstacles detection (OD) is one of the main components for the correct reconstruction of the dynamic world. Historical approaches based on stereo vision and other 3D perception technologies (e.g. LIDAR) have been adapted to the ADAS first and autonomous ground vehicles, after, providing excellent results. The obstacles detection is a very broad field and this domain counts a lot of works in the last years. In academic research, it has been clearly established the essential role of these systems to realize active safety systems for accident prevention, reflecting also the innovative systems introduced by industry. These systems need to accurately assess situational criticalities and simultaneously assess awareness of these criticalities by the driver; it requires that the obstacles detection algorithms must be reliable and accurate, providing: a real-time output, a stable and robust representation of the environment and an estimation independent from lighting and weather conditions. Initial systems relied on only one exteroceptive sensor (e.g. radar or laser for ACC and camera for LDW) in addition to proprioceptive sensors such as wheel speed and yaw rate sensors. But, current systems, such as ACC operating at the entire speed range or autonomous braking for collision avoidance, require the use of multiple sensors since individually they can not meet these requirements. It has led the community to move towards the use of a combination of them in order to exploit the benefits of each one. Pedestrians and vehicles detection are ones of the major thrusts in situational criticalities assessment, still remaining an active area of research. ADASs are the most prominent use case of pedestrians and vehicles detection. Vehicles should be equipped with sensing capabilities able to detect and act on objects in dangerous situations, where the driver would not be able to avoid a collision. A full ADAS or autonomous vehicle, with regard to pedestrians and vehicles, would not only include detection but also tracking, orientation, intent analysis, and collision prediction. The system detects obstacles using a probabilistic occupancy grid built from a multi-resolution disparity map. Obstacles classification is based on an AdaBoost SoftCascade trained on Aggregate Channel Features. A final stage of tracking and fusion guarantees stability and robustness to the result.
Resumo:
Relationships between clustering, description length, and regularisation are pointed out, motivating the introduction of a cost function with a description length interpretation and the unusual and useful property of having its minimum approximated by the densest mode of a distribution. A simple inverse kinematics example is used to demonstrate that this property can be used to select and learn one branch of a multi-valued mapping. This property is also used to develop a method for setting regularisation parameters according to the scale on which structure is exhibited in the training data. The regularisation technique is demonstrated on two real data sets, a classification problem and a regression problem.
Resumo:
Radial Basis Function networks with linear outputs are often used in regression problems because they can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. We show how RBFs with logistic and softmax outputs can be trained efficiently using the Fisher scoring algorithm. This approach can be used with any model which consists of a generalised linear output function applied to a model which is linear in its parameters. We compare this approach with standard non-linear optimisation algorithms on a number of datasets.
Resumo:
Radial Basis Function networks with linear outputs are often used in regression problems because they can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. In this paper we show how RBFs with logistic and softmax outputs can be trained efficiently using algorithms derived from Generalised Linear Models. This approach is compared with standard non-linear optimisation algorithms on a number of datasets.
Resumo:
We consider the problem of assigning an input vector to one of m classes by predicting P(c|x) for c=1,...,m. For a two-class problem, the probability of class one given x is estimated by s(y(x)), where s(y)=1/(1+e-y). A Gaussian process prior is placed on y(x), and is combined with the training data to obtain predictions for new x points. We provide a Bayesian treatment, integrating over uncertainty in y and in the parameters that control the Gaussian process prior the necessary integration over y is carried out using Laplace's approximation. The method is generalized to multiclass problems (m>2) using the softmax function. We demonstrate the effectiveness of the method on a number of datasets.
Resumo:
Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.