980 resultados para moving images


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rice et al. (Jounal of Mechanics and Physics of Solids 42, 813-843) analyze the propagation of a planar crack with a nominally straight front in a model elastic solid with a single displacement component. Using the form of Willis er al. (Journal of the Mechanics and Physics of Solids 43, 319-341), of dynamic mode I weight functions for a moving crack, we address that problem solved by Rice ei al. in the 3D context of elastodynamic theory. Oscillatory crack tip motion results from constructive-destructive interference of stress intensity waves. Those waves, including system of the dilatational, shear and Rayleigh waves, interact on each other and with moving edge of crack, can lead to continuing fluctuations of the crack front and propagation velocity. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, a liquid (or melt) film of relatively high temperature ejected from a vessel and painted on the-moving solid film is analyzed by using the second-order fluid model of the non-Newtonian fluid. The thermocapillary flow driven by the temperature gradient on the free surface of a Newtonian liquid film was discussed before. The effect of rheological fluid on thermocapillary flow is considered in the present paper. The analysis is based on the approximations of lubrication theory and perturbation theory. The equation of liquid height and the process of thermal hydrodynamics of the non-Newtonian liquid film are obtained, and the case of weak effect of the rheological fluid is solved in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die swell is an important, phenomenon. in polymer processing, and is explained usually by rheological properties of the fluid. Because of the nonuniform of temperature distribution on the free surface of the liquid jet, the thermo capillary convection driven by surface tension gradient exists. The rheological fluid flowing out of a die and painting on a moving solid wall is studied by the numerical finite element method of a two-dimensional and unsteady model in the present paper, and both the rheological effect of a non-Newtonian fluid and the thermocapillary effect are considered. The results show that both,effects; will enlarge the cross-section of the fluid jet, and the rheological effect of non-Newtonian fluid dominates the process in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk nanostructured metals are often formed via severe plastic deformation (SPD). The dislocations generated during SPD evolve into boundaries to decompose the grains. Vacancies are also produced in large numbers during SPD, but have received much less attention. Using transmission electron microscopy, here we demonstrate a high density of unusually large vacancy Frank loops in SPD-processed Al. They are shown to impede moving dislocations and should be a contributor to strength. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A moving-coil designed micro-mechanics tester, named as MicroUTM (universal testing machine), is in-house developed in this paper for micro-mechanics tests. The main component is a moving coil suspended in a uniform magnetic field through a set of springs. When a current passes through the coil, the electromagnetic force is proportional to the magnitude of the current, so the load can easily be measured by the current. The displacement is measured using a capacitive sensor. The load is calibrated using a Sartorius BP211D analytical balance, with a resolution/range of 0.01 mg/80 g or 0.1 mg/210 g. The displacement is calibrated using a HEIDENHAIN CT-6002 length gauge with an accuracy of +/- 0.1 mu m. The calibration results show that the load range is +/- 1 N and the displacement range is +/- 300 mu m. The noise levels of the load and displacement are 50 mu N and 150 nm, respectively. The nonlinearity of the load is only 0.2%. Several in-plane load tests of the MEMS micro-cantilever are performed using this tester. Experimental results, with excellent repeatability, demonstrate the reliability of the load measurement as well as the flexible function of this tester.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular dynamics method is used to analyze the dynamic propagation of an atomistic crack tip. The simulation shows that the crack propagates at a relatively constant global velocity which is well below the Rayleigh wave velocity. However the local propagation velocity oscillates violently, and it is limited by the longitudinal wave velocity. The crack velocity oscillation is caused by a repeated process of crack tip blunting and sharpening. When the crack tip opening displacement exceeds a certain critical value, a lattice instability takes place and results in dislocation emissions from the crack tip. Based on this concept, a criterion for dislocation emission from a moving crack tip is proposed. The simulation also identifies the emitted dislocation as a source for microcrack nucleation. A simple method is used to examine this nucleation process. (C) 1996 American Institute of Physics.