985 resultados para movement systems
Resumo:
This paper presents an Airborne Systems Laboratory for Automation Research. The Airborne Systems Laboratory (ASL) is a Cessna 172 aircraft that has been specially modified and equipped by ARCAA specifically for research in future aircraft automation technologies, including Unmanned Airborne Systems (UAS). This capability has been developed over a long period of time, initially through the hire of aircraft, and finally through the purchase and modification of a dedicated flight-testing capability. The ASL has been equipped with a payload system that includes the provision of secure mounting, power, aircraft state data, flight management system and real-time subsystem. Finally, this system has been deployed in a cost effective platform allowing real-world flight-testing on a range of projects.
Resumo:
The field of collaborative health planning faces significant challenges created by the narrow focus of the available information, the absence of a framework to organise that information and the lack of systems to make information accessible and guide decision-making. These challenges have been magnified by the rise of the ‘healthy communities movement’, as a result of which, there have been more frequent calls for localised, collaborative and evidence-driven health related decision-making. This paper discusses the role of decision support systems as a mechanism to facilitate collaborative health decision-making. The paper presents a potential information management framework to underpin a health decision support system and describes the participatory process that is currently being used to create an online tool for health planners using geographic information systems. The need for a comprehensive information management framework to guide the process of planning for healthy communities has been emphasised. The paper also underlines the critical importance of the proposed framework not only in forcing planners to engage with the entire range of health determinants, but also in providing sufficient flexibility to allow exploration of the local setting-based determinants of health.
Resumo:
Modelling droplet movement on leaf surfaces is an important component in understanding how water, pesticide or nutrient is absorbed through the leaf surface. A simple mathematical model is proposed in this paper for generating a realistic, or natural looking trajectory of a water droplet traversing a virtual leaf surface. The virtual surface is comprised of a triangular mesh structure over which a hybrid Clough-Tocher seamed element interpolant is constructed from real-life scattered data captured by a laser scanner. The motion of the droplet is assumed to be affected by gravitational, frictional and surface resistance forces and the innovation of our approach is the use of thin-film theory to develop a stopping criterion for the droplet as it moves on the surface. The droplet model is verified and calibrated using experimental measurement; the results are promising and appear to capture reality quite well.
Resumo:
This thesis reports on the investigations, simulations and analyses of novel power electronics topologies and control strategies. The research is financed by an Australian Research Council (ARC) Linkage (07-09) grant. Therefore, in addition to developing original research and contributing to the available knowledge of power electronics, it also contributes to the design of a DC-DC converter for specific application to the auxiliary power supply in electric trains. Specifically, in this regard, it contributes to the design of a 7.5 kW DC-DC converter for the industrial partner (Schaffler and Associates Ltd) who supported this project. As the thesis is formatted as a ‘thesis by publication’, the contents are organized around published papers. The research has resulted in eleven papers, including seven peer reviewed and published conference papers, one published journal paper, two journal papers accepted for publication and one submitted journal paper (provisionally accepted subject to few changes). In this research, several novel DC-DC converter topologies are introduced, analysed, and tested. The similarity of all of the topologies devised lies in their ‘current circulating’ switching state, which allows them to store some energy in the inductor, as extra inductor current. The stored energy may be applied to enhance the performance of the converter in the occurrence of load current or input voltage disturbances. In addition, when there is an alternating load current, the ability to store energy allows the converter to perform satisfactorily despite frequently and highly varying load current. In this research, the capability of current storage has been utilised to design topologies for specific applications, and the enhancement of the performance of the considered applications has been illustrated. The simplest DC-DC converter topology, which has a ‘current circulating’ switching state, is the Positive Buck-Boost (PBB) converter (also known as the non-inverting Buck-Boost converter). Usually, the topology of the PBB converter is operating as a Buck or a Boost converter in applications with widely varying input voltage or output reference voltage. For example, in electric railways (the application of our industrial partner), the overhead line voltage alternates from 1000VDC to 500VDC and the required regulated voltage is 600VDC. In the course of this research, our industrial partner (Schaffler and Associates Ltd) industrialized a PBB converter–the ‘Mudo converter’–operating at 7.5 kW. Programming the onboard DSP and testing the PBB converter in experimental and nominal power and voltage was part of this research program. In the earlier stages of this research, the advantages and drawbacks of utilization of the ‘current circulating’ switching state in the positive Buck-Boost converter were investigated. In brief, the advantages were found to be robustness against input voltage and current load disturbances, and the drawback was extra conduction and switching loss. Although the robustness against disturbances is desirable for many applications, the price of energy loss must be minimized to attract attention to the utilization of the PBB converter. In further stages of this research, two novel control strategies for different applications were devised to minimise the extra energy loss while the advantages of the positive Buck-Boost converter were fully utilized. The first strategy is Smart Load Controller (SLC) for applications with pre-knowledge or predictability of input voltage and/or load current disturbances. A convenient example of these applications is electric/hybrid cars where a master controller commands all changes in loads and voltage sources. Therefore, the master controller has a pre-knowledge of the load and input voltage disturbances so it can apply the SLC strategy to utilize robustness of the PBB converter. Another strategy aiming to minimise energy loss and maximise the robustness in the face of disturbance is developed to cover applications with unexpected disturbances. This strategy is named Dynamic Hysteresis Band (DHB), and is used to manipulate the hysteresis band height after occurrence of disturbance to reduce dynamics of the output voltage. When no disturbance has occurred, the PBB converter works with minimum inductor current and minimum energy loss. New topologies based on the PBB converter have been introduced to address input voltage disturbances for different onboard applications. The research shows that the performance of applications of symmetrical/asymmetrical multi-level diode-clamped inverters, DC-networks, and linear-assisted RF amplifiers may be enhanced by the utilization of topologies based on the PBB converter. Multi-level diode-clamped inverters have the problem of DC-link voltage balancing when the power factor of their load closes to unity. This research has shown that this problem may be solved with a suitable multi-output DC-DC converter supplying DClink capacitors. Furthermore, the multi-level diode-clamped inverters supplied with asymmetrical DC-link voltages may improve the quality of load voltage and reduce the level of Electromagnetic Interference (EMI). Mathematical analyses and experiments on supplying symmetrical and asymmetrical multi-level inverters by specifically designed multi-output DC-DC converters have been reported in two journal papers. Another application in which the system performance can be improved by utilization of the ‘current circulating’ switching state is linear-assisted RF amplifiers in communicational receivers. The concept of ‘linear-assisted’ is to divide the signal into two frequency domains: low frequency, which should be amplified by a switching circuit; and the high frequency domain, which should be amplified by a linear amplifier. The objective is to minimize the overall power loss. This research suggests using the current storage capacity of a PBB based converter to increase its bandwidth, and to increase the domain of the switching converter. The PBB converter addresses the industrial demand for a DC-DC converter for the application of auxiliary power supply of a typical electric train. However, after testing the industrial prototype of the PBB converter, there were some voltage and current spikes because of switching. To attenuate this problem without significantly increasing the switching loss, the idea of Active Gate Signalling (AGS) is presented. AGS suggests a smart gate driver that selectively controls the switching process to reduce voltage/current spikes, without unacceptable reduction in the efficiency of switching.
Resumo:
This paper investigates the impact of carrier frequency offset (CFO) on Single Carrier wireless communication systems with Frequency Domain Equalization (SC-FDE). We show that CFO in SC-FDE systems causes irrecoverable channel estimation error, which leads to inter-symbol-interference (ISI). The impact of CFO on SC-FDE and OFDM is compared in the presence of CFO and channel estimation errors. Closed form expressions of signal to interference and noise ratio (SINR) are derived for both systems, and verified by simulation results. We find that when channel estimation errors are considered, SC-FDE is similarly or even more sensitive to CFO, compared to OFDM. In particular, in SC-FDE systems, CFO mainly deteriorates the system performance via degrading the channel estimation. Both analytical and simulation results highlight the importance of accurate CFO estimation in SC-FDE systems.
Resumo:
Jordan is adopting Enterprise Resource Planning (ERP) systems in both its public and private sectors. Jordan's emerging private sector has historically close ties to the public sector; though a global market orientation requires a shift in its organizational culture. ERPs however embed business processes which do not necessarily fit with traditional cultural practices, and implementation success is not assured. This study looks at the perceptions of both public and private sector ERP implementations in Jordan and assesses these on various measures of success. There were few differences between public and private sectors, but the benefits actually realized in Jordanian ERPs fell short of claims made for the technology in other cultures.
Dynamic analysis of on-board mass data to determine tampering in heavy vehicle on-board mass systems
Resumo:
Transport Certification Australia Limited, jointly with the National Transport Commission, has undertaken a project to investigate the feasibility of on-board mass monitoring (OBM) devices for regulatory purposes. OBM increases jurisdictional confidence in operational heavy vehicle compliance. This paper covers technical issues regarding potential use of dynamic data from OBM systems to indicate that tampering has occurred. Tamper-evidence and accuracy of current OBM systems needed to be determined before any regulatory schemes were put in place for its use. Tests performed to determine potential for, and ease of, tampering. An algorithm was developed to detect tamper events. Its results are detailed.
Resumo:
Objective • Feasibility programme for on-board mass (OBM) monitoring of heavy vehicles (HVs) • Australian road authorities through Transport Certification Australia (TCA) • Accuracy of contemporary, commercially-available OBM units in Australia • Results need to be addressed/incorporated into specifications for Stage 2 of Intelligent Access Program (IAP) by Transport Certification Australia
Resumo:
Managing livestock movement in extensive systems has environmental and production benefits. Currently permanent wire fencing is used to control cattle; this is both expensive and inflexible. Cattle are known to respond to auditory and visual cues and we investigated whether these can be used to manipulate their behaviour. Twenty-five Belmont Red steers with a mean live weight of 270kg were each randomly assigned to one of five treatments. Treatments consisted of a combination of cues (audio, tactile and visual stimuli) and consequence (electrical stimulation). The treatments were electrical stimulation alone, audio plus electrical stimulation, vibration plus electrical stimulation, light plus electrical stimulation and electrified electric fence (6kV) plus electrical stimulation. Cue stimuli were administered for 3s followed immediately by electrical stimulation (consequence) of 1kV for 1s. The experiment tested the operational efficacy of an on-animal control or virtual fencing system. A collar-halter device was designed to carry the electronics, batteries and equipment providing the stimuli, including audio, vibration, light and electrical of a prototype virtual fencing device. Cattle were allowed to travel along a 40m alley to a group of peers and feed while their rate of travel and response to the stimuli were recorded. The prototype virtual fencing system was successful in modifying the behaviour of the cattle. The rate of travel of cattle along the alley demonstrated the large variability in behavioural response associated with tactile, visual and audible cues. The experiment demonstrated virtual fencing has potential for controlling cattle in extensive grazing systems. However, larger numbers of cattle need to be tested to derive a better understanding of the behavioural variance. Further controlled experimental work is also necessary to quantify the interaction between cues, consequences and cattle learning.
Resumo:
This paper reports on a large, long-term mobile wireless sensor network deployment. The trial was part of an animal study involving 45 animals. During the trial, 15 animals were equipped with wireless sensor nodes for a week. The paper discusses various issues with such a deployment including electronic design, software design, animal ethics clearance, logistics, and wearable computing equipment for animals. The paper also presents some preliminary analysis of the data obtained from the deployment, both from the perspective of network parameters and animal movement behavior.
Resumo:
Agriculture accounts for a significant portion of the GDP in most developed countries. However, managing farms, particularly largescale extensive farming systems, is hindered by lack of data and increasing shortage of labour. We have deployed a large heterogeneous sensor network on a working farm to explore sensor network applications that can address some of the issues identified above. Our network is solar powered and has been running for over 6 months. The current deployment consists of over 40 moisture sensors that provide soil moisture profiles at varying depths, weight sensors to compute the amount of food and water consumed by animals, electronic tag readers, up to 40 sensors that can be used to track animal movement (consisting of GPS, compass and accelerometers), and 20 sensor/actuators that can be used to apply different stimuli (audio, vibration and mild electric shock) to the animal. The static part of the network is designed for 24/7 operation and is linked to the Internet via a dedicated high-gain radio link, also solar powered. The initial goals of the deployment are to provide a testbed for sensor network research in programmability and data handling while also being a vital tool for scientists to study animal behavior. Our longer term aim is to create a management system that completely transforms the way farms are managed.
Resumo:
Virtual fencing has the potential to control grazing livestock. Understanding and refi ning the cues that can alter behaviour is an integral part of autonomous animal control. A series of tests have been completed to explore the relationship between temperament and control. Prior to exposure to virtual fencing control the animals were scored for temperament using fl ight speed and a sociability index using contact logging devices. The behavioural response of 30, Belmont Red steers were observed for behavioural changes when presented with cues prior to receiving an electrical stimulation. A control and four treatments designed to interrupt the animal’s movement down an alley were tested. The treatments consisted of sound plus electrical stimulation, vibration plus electrical stimulation, a visual cue plus electrical stimulation and electrical stimulation by itself. The treatments were randomly applied to each animal over fi ve consecutive trials. A control treatment in which no cues were applied was used to establish a basal behavioural pattern. A trial was considered completed after each animal had been retained behind the cue barrier for at least 60 sec. All cues and electrical stimulation were manually applied from a laptop located on a portable 3.5 m tower located immediately outside the alley. The electric stimulation consisted of 1.0 Kv of electricity. Electric stimulation, sound and vibration along with the Global Position System (GPS) hardware to autonomously record the animal’s path within the alley were recorded every second.
Resumo:
The Dynamic Data eXchange (DDX) is our third generation platform for building distributed robot controllers. DDX allows a coalition of programs to share data at run-time through an efficient shared memory mechanism managed by a store. Further, stores on multiple machines can be linked by means of a global catalog and data is moved between the stores on an as needed basis by multi-casting. Heterogeneous computer systems are handled. We describe the architecture of DDX and the standard clients we have developed that let us rapidly build complex control systems with minimal coding.
Resumo:
Visual servoing has been a viable method of robot manipulator control for more than a decade. Initial developments involved positionbased visual servoing (PBVS), in which the control signal exists in Cartesian space. The younger method, image-based visual servoing (IBVS), has seen considerable development in recent years. PBVS and IBVS offer tradeoffs in performance, and neither can solve all tasks that may confront a robot. In response to these issues, several methods have been devised that partition the control scheme, allowing some motions to be performed in the manner of a PBVS system, while the remaining motions are performed using an IBVS approach. To date, there has been little research that explores the relative strengths and weaknesses of these methods. In this paper we present such an evaluation. We have chosen three recent visual servo approaches for evaluation in addition to the traditional PBVS and IBVS approaches. We posit a set of performance metrics that measure quantitatively the performance of a visual servo controller for a specific task. We then evaluate each of the candidate visual servo methods for four canonical tasks with simulations and with experiments in a robotic work cell.
Resumo:
Presents a unified and systematic assessment of ten position control strategies for a hydraulic servo system with single-ended cylinder driven by a proportional directional control valve. We aim at identifying those methods that achieve better tracking, have a low sensitivity to system uncertainties, and offer a good balance between development effort and end results. A formal approach for solving this problem relies on several practical metrics, which is introduced herein. Their choice is important, as the comparison results between controllers can vary significantly, depending on the selected criterion. Apart from the quantitative assessment, we also raise aspects which are difficult to quantify, but which must stay in attention when considering the position control problem for this class of hydraulic servo systems.