969 resultados para microcapsule resina melammina-formaldeide
Resumo:
O presente trabalho objetivou avaliar o desenvolvimento de mudas de goiabeira em resposta a doses e modos de aplicação de fertilizante fosfatado. As mudas de goiabeira foram transplantadas em conjuntos de vasos (sacos plásticos, 18 x 28 cm) geminados, contendo em cada lado 2,8 dm³ do subsolo de um Argissolo (P resina = 1 mg dm-3), de modo que a metade do sistema radicular ficasse em cada vaso. Usou-se um fatorial 2 x 3 x 2 + 1 (testemunha, sem fósforo), em 5 blocos casualizados. As doses de 70; 140 e 280 mg de P dm-3 de solo, na forma de superfosfato triplo, foram aplicadas de dois modos diferentes com relação ao solo (distribuído em todo o volume do solo ou localizado a 1/3 de profundidade) e dois modos diferentes com relação às raízes (dividindo-se a dose igualmente entre os dois vasos do conjunto ou aplicando-se a dose total em um único vaso). Cem dias após o transplante, verificou-se maior acúmulo de P e maior produção de matéria seca nas plantas que receberam adubação fosfatada. As mudas de goiabeira responderam positivamente à adubação fosfatada, sendo a dose próxima de 100 mg de P dm-3 de solo suficiente para o bom desenvolvimento das plantas. Doses acima de 200 mg de P dm-3 promoveram redução do crescimento das mudas de goiabeira. A disponibilização de fósforo à metade ou a todo o sistema radicular da goiabeira não afetou o suprimento desse nutriente às mudas e tampouco o seu desenvolvimento. A aplicação do adubo fosfatado distribuído em todo o volume de solo no vaso proporcionou maior desenvolvimento do sistema radicular e menor desenvolvimento da parte aérea das mudas de goiabeira, comparado à aplicação localizada do adubo a 1/3 de profundidade.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Os resíduos vegetais das culturas, ao se decomporem, alteram os atributos químicos do solo e, como consequência, influenciam a produtividade das culturas em sucessão. O objetivo deste trabalho foi avaliar os atributos químicos do solo e a produtividade das culturas de soja, milho e arroz, cultivadas no verão, em sucessão a culturas de inverno em semeadura direta. O experimento foi realizado em Jaboticabal-SP (48 ° 18 ' 58 '' W e 21 ° 15 ' 22 '' S), em um Latossolo Vermelho eutrófico. O delineamento experimental foi em blocos ao acaso, no esquema em faixas, com três repetições. Os tratamentos foram constituídos pela combinação de quatro sequências de culturas de verão (monoculturas de milho e soja e rotações soja/milho e arroz/feijão/algodão) com sete culturas de inverno (milho, girassol, nabo forrageiro, milheto, guandu, sorgo e crotalária). Os cultivos iniciaram-se em 2002. Após o manejo das culturas de inverno e antes da semeadura das culturas de verão do ano agrícola 2006/2007, foram coletadas amostras de solo nas camadas de 0-2,5; 2,5-5,0; 5-10; 10-20; e 20-30 cm. Nas amostras de solo, foram determinados: teores de matéria orgânica, pH, teores de P (resina), K, Ca e Mg trocáveis e acidez potencial (H + Al). As sequências de verão rotação soja/milho e milho em monocultura proporcionaram no solo menores teores de matéria orgânica na camada de 0-10 cm e de P do solo na camada de 0-20 cm. Na sequência de verão arroz/feijão/algodão, maiores teores de K foram proporcionados pelas culturas de inverno crotalária e nabo forrageiro, na camada de 0-10 cm, e milheto, na de 0-2,5 cm. Crotalária, milheto, nabo forrageiro e sorgo, cultivados no inverno, proporcionaram maiores teores de matéria orgânica no solo na camada de 0-30 cm. Maiores teores de P no solo foram proporcionados pela crotalária, na camada de 0-2,5 cm, e pelo nabo forrageiro, na de 0-5 cm. Maiores produtividades de soja, como monocultura de verão, foram obtidas após nabo forrageiro e crotalária e, quando em rotação com milho no verão, após nabo forrageiro, crotalária e milheto. Maiores produtividades de milho foram obtidas após nabo forrageiro, milheto e guandu, e menor produtividade de arroz foi obtida após sorgo.
Resumo:
Foram avaliados os efeitos da aplicação de fósforo (P) em solo argiloso, de textura média e arenoso, sobre a produção de matéria seca de Panicum maximum Jacq. cv. Tanzânia. O ensaio foi conduzido em casa de vegetação, em vasos de plástico contendo 10 dm³ de solo, em esquema fatorial e delineamento inteiramente ao acaso. Após calagem para V = 70% e aplicação de 0, 35, 70, 105 e 140 mg/dm³ de P, o solo foi umedecido, e depois de 30 dias, secado e amostrado. O ensaio foi conduzido por 76 dias, a partir da emergência das plântulas, com o primeiro corte aos 48 dias, a 10 cm do solo, e o segundo, aos 76,rente ao solo. Com a aplicação de P houve aumento de produção de matéria seca, e o maior acréscimo ocorreu com a aplicação de 35 mg/dm³. A maior produção foi obtida no solo de textura média. O teor de P nas plantas estava adequado nos solos arenoso e argiloso. No de textura média, ele diminuiu com o aumento da produção,caracterizando efeito de diluição. Com aprodução relativa e o teor de P de cada solo, foi determinado o nível crítico de 38 mg/dm³ de P extraído por resina.
Resumo:
Structures capable of absorbing large amounts of energy are of great interest, particularly for the automotive and aviation industries, to reduce tbe impact on passengers in the case of a collision. The energy absorption properties of composite materials structures can be tailored, thus making these structures an appealing option a substitute of more traditional structures in applications where energy absorption is crucial. ln this research, the influence of some parameters, which affect the energy absorption capacity of composite material tubes, was investigated. The tubes were fabricated by hand lay-up, using orthophthalic polyester resin and a plain weave E-glass fabric Test specimens were prepared and tested under compression load. The ínfluence of the following parameters on the specific energy absorption capacity of the tubes was studied: fiber configuration (0/90º or ± 45°), tube cross-section (circular or square), and processing conditions (with or without vacuum). The results indicated that circular cross-section tubes with fibers oriented at 0/90º presented the highest level of specific energy absorbed. Further, specimens from tubes fabricated under vacuum displayed higher energy absorption capacity, when compared with specimens from tubes fabricated without vacuum. Thus, it can be concluded that the fabrication process with vacuum produce composite structures with better energy absorption capacity
Resumo:
This research is based, at first, on the seeking of alternatives naturals reinforced in place of polymeric composites, also named reinforced plastics. Therein, this work starts with a whole licuri fiber micro structural characterization, as alternative proposal to polymeric composites. Licuri fiber is abundant on the Bahia state flora, native from a palm tree called Syagrus Coronata (Martius) Beccari. After, it was done only licuri fiber laminar composite developing studies, in order to know its behavior when impregnated with thermofix resin. The composite was developed in laminar structure shape (plate with a single layer of reinforcement) and produced industrially. The layer of reinforcement is a fabric-fiber unidirectional of licuri up in a manual loom. Their structure was made of polyester resin ortofitálica (unsaturated) only reinforced with licuri fibers. Fiber characterization studies were based on physical chemistry properties and their constitution. It was made by tension, scanning electron microscopy (SEM), x-ray diffraction (RDX) and thermal analyses (TG and DTA) tests, besides fiber chemistry analyses. Relating their mechanical properties of strength and hardness testing, they were determined through unit axial tension test and flexion in three points. A study in order to know fiber/matrix interface effects, in the final composites results, was required. To better understand the mechanical behavior of the composite, macroscopic and microscopic optical analysis of the fracture was performed
Resumo:
In this study were conducted experimental procedures for determination of variation of the expandability of rigid polyurethane foam (PUR) from a natural oil polyol (NOP), specifically the Castor oil plant, Ricinus communis, pure and additions of the vermiculite in phase dispersed in different percentage within a range from 0% to 20%, mass replacement. From the information acquired, were defined the parameters for production of bodies of test, plates obtained through controlled expansion, with the final volume fixed. Initially, the plates were subjected to thermal performance tests and evaluated the temperature profiles, to later be extracted samples duly prepared in accordance with the conditions required for each test. Was proceeded then the measurement of the coefficient of thermal conductivity, volumetric capacity heat and thermal diffusivity. The findings values were compared with the results obtained in the tests of thermal performance, contributing to validation of the same. Ultimately, it was investigated the influence that changes in physical-chemical structure of the material had exerted on the variation of thermophysical quantities through gas pycnometry, scanning electron microscopy (SEM) combined with energy dispersive X-ray fluorescence spectroscopy (EDXRF), infrared spectroscopy using Fourier transform (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Based on the results obtained was possible to demonstrate that all load percentage analyzed promoted an increase in the potential expansion (PE) of the resin. In production of the plates, the composites with density near at the free expansion presented high contraction during the cure, being the of higher density adopted as definitive standard. In the thermal performance tests, the heating and cooling curves of the different composites had presented symmetry and values very close for lines of the temperature. The results obtained for the thermophysical properties of composites, showed little difference in respect of pure foam. The percentage of open pores and irregularities in the morphology of the composites were proportionate to the increment of vermiculite. In the interaction between the matrix and dispersed phase, there were no chemical transformations in the region of interface and new compounds were not generated. The composites of PUR-NOP and vermiculite presented thermal insulating properties near the foam pure and percentage significantly less plastic in its composition, to the formulation with 10% of load
Resumo:
In the manufacture of composite, textile materials are being used as reinforcement. Generally, the combination of the matrix with the textile material in the form of fibres or yarns is used depending on their distribution in the web. In the present work, in place of fibres or yarns, a knitted structure in the form of the final product which is defined as preform. The preform is weft knit manufactured with polyester filaments. In the manufacture of composite, polyester resin was used as matrix. The physical and mechanical properties as well as the formability of the weft knit were analysed. The physical and mechanical properties as well as the formability of the knitted structure were analysed. The results obtained on the analysis show that the courses and wales of the weft knit structure and the tensile properties help the formability of the structure and the impregnation of the resin. It could be clearly observed that composite structure in the direction of the courses support more tension than in the direction of the wales. In relation to the three points flexural tests it was possible to note that there was more flexion in the direction of wales, what was expected. It was also possible to note that there are other advantages such as reduction in the loss of materials used, homogeneity in the distribution of the knitted structure in the mould, reduction in the preparation time and also in the reduction in the cost of manufacture
Resumo:
There are a number of damaging mechanisms that various materials can suffer in service. However, when working with polymer composite materials, this is something that requires analysis, especially when exposed to adverse environmental conditions. Thus, the objective of the present thesis is the study of the direct influence of environmental aging and the form of hybridization of the reinforcement woven on the structural stability, surfacedegradation and fracture process of polymer composites laminates. For this, the development of two polymer composite laminates was necessary, where one of them was reinforced with a bi-directional woven with hybrid strandsofkevlar-49/glass-Efibers, and the other also with a bi-directionalwoven, however with weft and warpformed of alternating strandsof Kevlar-49 fibers and glass-E fiber The reinforcementwoven are industrially manufactured. Both laminates use a polyester resin as a matrixand are made up of four layers each. All laminates were industrially prepared by the hand lay-up method of manufacturing. To do this, test specimens were manufactured of the respective laminates and submitted to environmental aging accelerated through the aging chamber. They were exposed to alternating cycles of UV radiation and moisture (heated steam) for a standard defined period. At the end of the exposure period the specimens were subjected to mechanical tests of uniaxial tensile and bending in three points and to the characterizationsof the fracture and surface deterioration. In addition, they were submitted to a structural degradation assessment by the measurement of mass variation technique (MMVT) and the measurement of thickness variation technique (MTVT), this last technique being developed in this thesis. At the end of the analysis it was observed that the form of hybridization of the reinforcement woven and the aging process directly influence with losses or gain in mechanical properties, with losses in the structural degradation and in the formation and propagation of damage mechanism of the developedcomposite laminates
Resumo:
The application of composite materials and in particular the fiber-reinforced plastics (FRP) has gradually conquered space from the so called conventional materials. However, challenges have arisen when their application occurs in equipment and mechanical structures which will be exposed to harsh environmental conditions, especially when there is the influence of environmental degradation due to temperature, UV radiation and moisture in the mechanical performance of these structures, causing irreversible structural damage such as loss of dimensional stability, interfacial degradation, loss of mass, loss of structural properties and changes in the damage mechanism. In this context, the objective of this thesis is the development of a process for monitoring and modeling structural degradation, and the study of the physical and mechanical properties in FRP when in the presence of adverse environmental conditions (ageing). The mechanism of ageing is characterized by controlled environmental conditions of heated steam and ultraviolet radiation. For the research, it was necessary to develop three polymer composites. The first was a lamina of polyester resin reinforced with a short glass-E fiber mat (representing the layer exposed to ageing), and the other two were laminates, both of seven layers of reinforcement, one being made up only of short fibers of glass-E, and the other a hybrid type reinforced with fibers of glass-E/ fibers of curaua. It should be noted that the two laminates have the lamina of short glass-E fibers as a layer of the ageing process incidence. The specimens were removed from the composites mentioned and submitted to environmental ageing accelerated by an ageing chamber. To study the monitoring and modeling of degradation, the ageing cycles to which the lamina was exposed were: alternating cycles of UV radiation and heated steam, a cycle only of UV radiation and a cycle only of heated steam, for a period defined by norm. The laminates have already undergone only the alternating cycle of UV and heated steam. At the end of the exposure period the specimens were subjected to a structural stability assessment by means of the developed measurement of thickness variation technique (MTVT) and the measurement of mass variation technique (MMVT). Then they were subjected to the mechanical tests of uniaxial tension for the lamina and all the laminates, besides the bending test on three points for the laminates. This study was followed by characterization of the fracture and the surface degradation. Finally, a model was developed for the composites called Ageing Zone Diagram (AZD) for monitoring and predicting the tensile strength after the ageing processes. From the results it was observed that the process of degradation occurs Abstract Raimundo Nonato Barbosa Felipe xiv differently for each composite studied, although all were affected in certain way and that the most aggressive ageing process was that of UV radiation, and that the hybrid laminated fibers of glass-E/curaua composite was most affected in its mechanical properties
Resumo:
The standardization of the bovine skin thickness in the leather industry generates a residue known as wet-blue . At the end of twentieth century, the brazilian industry discarded about 131 thousand tons of this residue in nature, provoking a great environmental liability. In this paper is presented the analyses of the termophysical properties, thermal and volumetric expansion performance of a composite of vegetable resin of castor oil plant (Ricinus communis) with load of industrial residue of leather "wet-blue", for application as thermal isolation material of warm surfaces. There were considered four percentile levels of residue load in the proportions in mass of 0%, 5%, 10% and 15%, added to the expansible resin of castor oil plant in two configurations: sawed leather and crushed leather in a smaller particle (powder) by grinding in a mill of balls. Twenty-one proof bodies were produced for termophysical properties analysis (three for each configuration) and four proof bodies for rehearsals of thermal acting. Analyses of thermal acting were done in test cameras. The results of the rehearsals were compared to those obtained considering the castor oil plant foam without residue addition. A small reduction of the thermal conductivity of the composite was observed in the proportion of 10% of leather residue in both configurations. Regarding thermal conductivity, calorific capacity and diffusivity, it was verified that the proposed composite showed very close values to the commercial insulating materials (glass wool, rock wool, EPS). It was still demonstrated the technical viability of the use of composite as insulating thermal for systems of low potency. The composite presented larger volumetric expansion with 15% of sawed residue of leather.
Resumo:
This work proposes the development of an innovative material made from a vegetable polyurethane matrix and load of industrial waste, from retread tires, for thermal insulation and environmental comfort. Experimental procedures are presented, as well as the results of the thermal and acoustic performance of this composite material, made from an expansive foam derived from the castor seed oil and fiber of scrap tires. The residue was treated superficially with sodium hydroxide, to eliminate contaminants, and characterized macroscopically and microscopically. Samples were produced with addition of residues at levels of 5%, 10%, 15% and 20% by weight, for determination of thermal properties: conductivity, heat capacity and thermal diffusivity, sound absortion index and density. The results were compared to commercially available thermal insulation and sound absorbing products. According to the analysis of results, it was concluded that the developed composite presents characteristics that qualify it as a thermal insulation with superior performance, compared to commercial available insulation, and sound absorption capacity greater than the castor oil polyurethane s, without addition of the residue
Resumo:
With the objective to promote sustainable development, the fibres found in nature in abundance, which are biodegradable, of low cost in comparison to synthetic fibres are being used in the manufacture of composites. The mechanical behavior of the curauá and pineapple leaf fibre (PALF) composites in different proportions, 25% x 75% (P1), 50% x 50% (P2) e 75% x 25% (P3) were respectively studied, being initially treated with a 2% aqueous solution of sodium hydroxide. Mechanical analyses indicated that with respect to studies of traction, for the combination of P1 and P3, better results of 22.17 MPa and 16.98 MPa, were obtained respectively, which are higher than that of the combination P2. The results of the same pattern were obtained for analysis of bending resistance where P1 is 1.21% and P3 represents 0.96%. In the case of resistance to bending, best results were obtained for the combination P1 at 49.07 MPa. However, when Young's modulus values were calculated, the values were different to the pattern of the results of other tests, where the combination P2 with the value of 4.06 GPa is greater than the other combinations. This shows that the PALF had a greater influence in relation to curauá fibre. The analysis of the results generally shows that in combinations of two vegetable fibers of cellulosic origin, the fiber which shows higher percentage (75%) is the best option than to the composition of 50%/50%. In the meantime, according to the results obtained in this study, in the case where the application should withstand bending loads, the better composition would be 50%/50%
Resumo:
This research presents an approach to the addition of curauá fibers and licuri fibers in a polypropylene resin matrix, such as an alternative proposal to reinforce the polymeric composites. Fiber content of 0 %, 5 %, 10 %, and 20% were analyzed for verification of their mechanical properties comparing them, inclusive with the properties of polypropylene. The grainulated biocomposites had been prepared in an extrusora. The test bodies had been molded by injection and submitted to the mechanical essays uniaxial traction, flexion on three points, impact, in addition to thermal tests (HDT). These biocomposites had been also subjected the essay physicist-chemistry index of fluidity (IF). It was observed that the biocomposites of PP with 20% curauá, obtained bigger increase in the modulus of elasticity and a bigger reduction in the resistance to the impact. In the mechanical behavior, for all the biocomposites, these were increases in values of the limit of drainage and tension of rupture, when tested by uniaxial traction, as they added the fibers. Another important point was the increase of the resistance the flexion. It was also noted that the addition of fibers reduced the thermal degradation of the mixture natural fibers / polypropylene.
Resumo:
A determinação da fração do calcário remanescente no solo (calcário residual), em área onde foi realizada aplicação de calcário em superfície, sem incorporação, na implantação do sistema plantio direto, pode ser uma ferramenta importante para auxiliar na definição do momento em que se faz necessária a reaplicação de calcário. Nesse sentido, os objetivos deste trabalho foram avaliar: quais os teores de Ca e Mg trocáveis, extraídos por percolação com solução de KCl e resina trocadora de íons; a quantidade do calcário aplicado que ainda não havia reagido no solo, mediante a determinação dos teores de Ca e Mg não-trocáveis; e qual a influência do gesso nos teores de Ca e Mg trocáveis e na dissolução do calcário, 18 meses após a aplicação em superfície. O experimento foi realizado em um Latossolo Vermelho distroférrico, em Botucatu (SP). O delineamento experimental foi de blocos casualizados com parcelas subdivididas e quatro repetições. Nas parcelas, foram aplicadas quatro doses de calcário dolomítico (0, 1.100, 2.700 e 4.300 kg ha-1), com PRNT = 71,2 %, e nas subparcelas, duas doses de gesso agrícola (0 e 2.100 kg ha-1). O calcário e o gesso foram aplicados em superfície, sem incorporação. Houve alta correlação na determinação de Ca e Mg trocável entre os métodos de percolação com solução de KCl e resina trocadora de íons. A extração pelo método da resina trocadora de íons superestimou os teores de Ca e Mg trocáveis em solo com recente aplicação de calcário em superfície. A aplicação de gesso em superfície reduziu a dissolução do calcário na camada superficial (0-0,10 m). Os teores de Ca e Mg não-trocáveis podem ser utilizados para estimar a quantidade de calcário residual no solo.