999 resultados para micro-arc oxidation
Resumo:
This paper focus on the problem of locating single-phase faults in mixed distribution electric systems, with overhead lines and underground cables, using voltage and current measurements at the sending-end and sequence model of the network. Since calculating series impedance for underground cables is not as simple as in the case of overhead lines, the paper proposes a methodology to obtain an estimation of zero-sequence impedance of underground cables starting from previous single-faults occurred in the system, in which an electric arc occurred at the fault location. For this reason, the signal is previously pretreated to eliminate its peaks voltage and the analysis can be done working with a signal as close as a sinus wave as possible
Resumo:
OBJECTIVE: There are controversies regarding the pro-angiogenic activity of placental growth factor (PGF) in diabetic retinopathy (DR). For a better understanding of its role on the retina, we have evaluated the effect of a sustained PGF over-expression in rat ocular media, using ciliary muscle electrotransfer (ET) of a plasmid encoding rat PGF-1 (pVAX2-rPGF-1). MATERIALS AND METHODS: pVAX2-rPGF-1 ET in the ciliary muscle (200 V/cm) was achieved in non diabetic and diabetic rat eyes. Control eyes received saline or naked plasmid ET. Clinical follow up was carried out over three months using slit lamp examination and fluorescein angiography. After the control of rPGF-1 expression, PGF-induced effects on retinal vasculature and on the blood-external barrier were evaluated respectively by lectin and occludin staining on flat-mounts. Ocular structures were visualized through histological analysis. RESULTS: After fifteen days of rPGF-1 over-expression in normal eyes, tortuous and dilated capillaries were observed. At one month, microaneurysms and moderate vascular sprouts were detected in mid retinal periphery in vivo and on retinal flat-mounts. At later stages, retinal pigmented epithelial cells demonstrated morphological abnormalities and junction ruptures. In diabetic retinas, PGF expression rose between 2 and 5 months, and, one month after ET, rPGF-1 over-expression induced glial activation and proliferation. CONCLUSION: This is the first demonstration that sustained intraocular PGF production induces vascular and retinal changes similar to those observed in the early stages of diabetic retinopathy. PGF and its receptor Flt-1 may therefore be looked upon as a potential regulatory target at this stage of the disease.
Resumo:
According to the World Health Organization, 5.1% of blindnesses or visual impairments are related to corneal opacification. Cornea is a transparent tissue placed in front of the color of the eye. Its transparency is mandatory for vision. The ocular surface is a functional unit including the cornea and all the elements involved in maintaining its transparency i.e., the eyelids, the conjunctiva, the lymphoid tissue of the conjunctiva, the limbus, the lacrymal glands and the tear film. The destruction of the ocular surface is a disease caused by : traumatisms, infections, chronic inflammations, cancers, toxics, unknown causes or congenital abnormalities. The treatment of the ocular surface destruction requires a global strategy including all the elements that are involved in its physiology. The microenvironnement of the ocular surface must first be restored, i.e., the lids, the conjunctiva, the limbus and the structures that secrete the different layers of the tear film. In a second step, the transparency of the cornea can be reconstructed. A corneal graft performed in a healthy ocular surface microenvironnement will have a better survival rate. To achieve these goals, a thorough understanding of the renewal of the epitheliums and the role of the epithelial stem cells are mandatory.
Resumo:
Référence bibliographique : Rol, 55023
Resumo:
Background Coronary microvascular dysfunction (CMD) is associated with cardiovascular events in type 2 diabetes mellitus (T2DM). Optimal glycaemic control does not always preclude future events. We sought to assess the effect of the current target of HBA1c level on the coronary microcirculatory function and identify predictive factors for CMD in T2DM patients. Methods We studied 100 patients with T2DM and 214 patients without T2DM. All of them with a history of chest pain, non-obstructive angiograms and a direct assessment of coronary blood flow increase in response to adenosine and acetylcholine coronary infusion, for evaluation of endothelial independent and dependent CMD. Patients with T2DM were categorized as having optimal (HbA1c < 7 %) vs. suboptimal (HbA1c ≥ 7 %) glycaemic control at the time of catheterization. Results Baseline characteristics and coronary endothelial function parameters differed significantly between T2DM patients and control group. The prevalence of endothelial independent CMD (29.8 vs. 39.6 %, p = 0.40) and dependent CMD (61.7 vs. 62.2 %, p = 1.00) were similar in patients with optimal vs. suboptimal glycaemic control. Age (OR 1.10; CI 95 % 1.04–1.18; p < 0.001) and female gender (OR 3.87; CI 95 % 1.45–11.4; p < 0.01) were significantly associated with endothelial independent CMD whereas glomerular filtrate (OR 0.97; CI 95 % 0.95–0.99; p < 0.05) was significantly associated with endothelial dependent CMD. The optimal glycaemic control was not associated with endothelial independent (OR 0.60, CI 95 % 0.23–1.46; p 0.26) or dependent CMD (OR 0.99, CI 95 % 0.43–2.24; p = 0.98). Conclusions The current target of HBA1c level does not predict a better coronary microcirculatory function in T2DM patients. The appropriate strategy for prevention of CMD in T2DM patients remains to be addressed. Keywords: Endothelial dysfunction; Diabetes mellitus; Coronary microcirculation
Resumo:
Référence bibliographique : Rol, 54816
Resumo:
Référence bibliographique : Rol, 54825
Resumo:
Référence bibliographique : Rol, 54822
Resumo:
Référence bibliographique : Rol, 54819
Resumo:
Référence bibliographique : Rol, 54814
Resumo:
PURPOSE: The aim of this study was to examine whether lipid oxidation predominates during 3 h of postexercise recovery in high-intensity interval exercise as compared with moderate-intensity continuous exercise on a cycle ergometer in fit young men (n = 12; 24.6 +/- 0.6 yr). METHODS: The energy substrate partitioning was evaluated during and after high-intensity submaximal interval exercise (INT, 1-min intervals at 80% of maximal aerobic power output [Wmax] with an intervening 1 min of active recovery at 40% Wmax) and 60-min moderate-intensity continuous exercise at 45% of maximal oxygen uptake (C45%) as well as a time-matched resting control trial (CON). Exercise bouts were matched for mechanical work output. RESULTS: During exercise, a significantly greater contribution of CHO and a lower contribution of lipid to energy expenditure were found in INT (512.7 +/- 26.6 and 41.0 +/- 14.0 kcal, respectively) than in C45% (406.3 +/- 21.2 and 170.3 +/- 24.0 kcal, respectively; P < 0.001) despite similar overall energy expenditure in both exercise trials (P = 0.13). During recovery, there were no significant differences between INT and C45% in substrate turnover and oxidation (P > 0.05). On the other hand, the mean contribution of lipids to energy yield was significantly higher after exercise trials (C45% = 61.3 +/- 4.2 kcal; INT = 66.7 +/- 4.7 kcal) than after CON (51.5 +/- 3.4 kcal; P < 0.05). CONCLUSIONS: These findings show that lipid oxidation during postexercise recovery was increased by a similar amount on two isoenergetic exercise bouts of different forms and intensities compared with the time-matched no-exercise control trial.