882 resultados para metabolism and cognition


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis investigates the mechanisms by which HRG-1 contributes to the invasive and cytoprotective signalling pathways in cancer cells through its effects on VATPase activity and heme transport. Plasma membrane-localised V-ATPase activity correlates with enhanced metastatic potential in cancer cells, which is attributed to extrusion of protons into the extracellular space and activation of pH-sensitive, extracellular matrix degrading-proteases. We found that HRG-1 is co-expressed with the V-ATPase at the plasma membrane of certain aggressive cancer cell types. Modulation of HRG-1 expression altered both the localisation and activity of the VATPase. We also found that HRG-1 enhances trafficking of essential transporters such as the glucose transporter (GLUT-1) in cancer cells, and increases glucose uptake, which is required for cancer cell growth, metabolism and V-ATPase assembly. Heme is potentially cytotoxic, owing to its iron moiety, and therefore the trafficking of heme is tightly controlled in cells. We hypothesised that HRG-1 is required for the transport of heme to intracellular compartments. Importantly, we found that HRG-1 interacts with the heme oxygenases that are necessary for heme catabolism. HRG-1 is also required for trafficking of both heme-bound and nonheme-bound receptors and suppression of HRG-1 results in perturbed receptor trafficking to the lysosome. Suppression of HRG-1 in HeLa cells increases toxic heme accumulation, reactive oxygen species accumulation, and DNA damage resulting in caspasedependent cell death. Mutation of essential heme binding residues in HRG-1 results in decreased heme binding to HRG-1. Interestingly, cells expressing heme-binding HRG-1 mutants exhibit decreased internalisation of the transferrin receptor compared to cells expressing wildtype HRG-1. These findings suggest that HRG- 1/heme trafficking contributes to a hitherto unappreciated aspect of receptormediated endocytosis. Overall, the findings of this thesis show that HRG-1-mediated regulation of intracellular and extracellular pH through V-ATPase activity is essential for a functioning endocytic pathway. This is critical for cells to acquire nutrients such as folate, iron and glucose and to mediate signalling in response to growth factor activation. Thus, HRG-1 facilitates enhanced metabolic activity of cancer cells to enable tumour growth and metastasis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intervertebral disc (IVD) disorders are a major contributor to disability and societal health care costs. Nucleus pulposus (NP) cells of the IVD exhibit changes in both phenotype and morphology with aging-related IVD degeneration that may impact the onset and progression of IVD pathology. Studies have demonstrated that immature NP cell interactions with their extracellular matrix (ECM) may be key regulators of cellular phenotype, metabolism and morphology. The objective of this article is to review our recent experience with studies of NP cell-ECM interactions that reveal how ECM cues can be manipulated to promote an immature NP cell phenotype and morphology. Findings demonstrate the importance of a soft (<700 Pa), laminin-containing ECM in regulating healthy, immature NP cells. Knowledge of NP cell-ECM interactions can be used for development of tissue engineering or cell delivery strategies to treat IVD-related disorders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bacterial outer membrane vesicles (OMVs) are spherical buds of the outer membrane (OM) containing periplasmic lumenal components. OMVs have been demonstrated to play a critical part in the transmission of virulence factors, immunologically active compounds, and bacterial survival, however vesiculation also appears to be a ubiquitous physiological process for Gram-negative bacteria. Despite their characterized biological roles, especially for pathogens, very little is known about their importance for the originating organism as well as regulation and mechanism of production. Only when we have established their biogenesis can we fully uncover their roles in pathogenesis and bacterial physiology. The overall goal of this research was to characterize bacterial mutants which display altered vesiculation phenotypes using genetic and biochemical techniques, and thereby begin to elucidate the mechanism of vesicle production and regulation. One part of this work elucidated a synthetic genetic growth defect for a strain with reduced OMV production (ΔnlpA, inner membrane lipoprotein with a minor role in methionine transport) and envelope stress (ΔdegP, dual function periplasmic chaperone/ protease responsible for managing proteinaceous waste). This research showed that the growth defect of ΔnlpAΔdegP correlated with reduced OMV production with respect to the hyprevesiculator ΔdegP and the accumulation of protein in the periplasm and DegP substrates in the lumen of OMVs. We further demonstrated that OMVs do not solely act as a stress response pathway to rid the periplasm of otherwise damaging misfolded protein but also of accumulated peptidoglycan (PG) fragments and lipopolysaccharide (LPS), elucidating OMVs as a general stress response pathway critical for bacterial well-being. The second part of this work, focused on the role of PG structure, turnover and covalent crosslinks to the OM in vesiculation. We established a direct link between PG degradation and vesiculation: Mutations in the OM lipoprotein nlpI had been previously established as a very strong hypervesiculation phenotype. In the literature NlpI had been associated with another OM lipoprotein, Spr that was recently identified as a PG hydrolase. The data presented here suggest that NlpI acts as a negative regulator of Spr and that the ΔnlpI hypervesiculation phenotype is a result of rampantly degraded PG by Spr. Additionally, we found that changes in PG structure and turnover correlate with altered vesiculation levels, as well as non-canonical D-amino acids, which are secreted by numerous bacteria on the onset of stationary phase, being a natural factor to increase OMV production. Furthermore, we discovered an inverse relationship between the concentration of Lpp-mediated, covalent crosslinks and the level of OMV production under conditions of modulated PG metabolism and structure. In contrast, situations that lead to periplasmic accumulation (protein, PG fragments, and LPS) and consequent hypervesiculation the overall OM-PG crosslink concentration appears to be unchanged. Form this work, we conclude that multiple pathways lead to OMV production: Lpp concentration-dependent and bulk driven, Lpp concentration-independent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

FNDC5 (fibronectin domain-containing [protein] 5) was initially discovered and characterized by two groups in 2002. In 2011 FNDC5 burst into prominence as the parent of irisin, a small protein containing the fibronectin type III domain. Irisin was proposed to be secreted by skeletal muscle cells in response to exercise, and to circulate to fat tissue where it induced a transition to brown fat. Since brown fat results in dissipation of energy, this pathway is of considerable interest for metabolism and obesity. Here I review the original discoveries of FNDC5 and the more recent discovery of irisin. I note in particular three problems in the characterization of irisin: the antibodies used to detect irisin in plasma lack validity; the recombinant protein used to demonstrate activity in cell culture was severely truncated; and the degree of shedding of soluble irisin from the cell surface has not been quantitated. The original discovery proposing that FNDC5 may be a transmembrane receptor may deserve a new look.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. RESULTS: Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. CONCLUSIONS: Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous functional neuroimaging studies of temporal-order memory have investigated memory for laboratory stimuli that are causally unrelated and poor in sensory detail. In contrast, the present functional magnetic resonance imaging (fMRI) study investigated temporal-order memory for autobiographical events that were causally interconnected and rich in sensory detail. Participants took photographs at many campus locations over a period of several hours, and the following day they were scanned while making temporal-order judgments to pairs of photographs from different locations. By manipulating the temporal lag between the two locations in each trial, we compared the neural correlates associated with reconstruction processes, which we hypothesized depended on recollection and contribute mainly to short lags, and distance processes, which we hypothesized to depend on familiarity and contribute mainly to longer lags. Consistent with our hypotheses, parametric fMRI analyses linked shorter lags to activations in regions previously associated with recollection (left prefrontal, parahippocampal, precuneus, and visual cortices), and longer lags with regions previously associated with familiarity (right prefrontal cortex). The hemispheric asymmetry in prefrontal cortex activity fits very well with evidence and theories regarding the contributions of the left versus right prefrontal cortex to memory (recollection vs. familiarity processes) and cognition (systematic vs. heuristic processes). In sum, using a novel photo-paradigm, this study provided the first evidence regarding the neural correlates of temporal-order for autobiographical events.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

If and only if each single cue uniquely defines its target, a independence model based on fragment theory can predict the strength of a combined dual cue from the strengths of its single cue components. If the single cues do not each uniquely define their target, no single monotonic function can predict the strength of the dual cue from its components; rather, what matters is the number of possible targets. The probability of generating a target word was .19 for rhyme cues, .14 for category cues, and .97 for rhyme-plus-category dual cues. Moreover, some pairs of cues had probabilities of producing their targets of .03 when used individually and 1.00 when used together, whereas other pairs had moderate probabilities individually and together. The results, which are interpreted in terms of multiple constraints limiting the number of responses, show why rhymes, which play a minimal role in laboratory studies of memory, are common in real-world mnemonics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Immune responses are highly energy-dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. Although it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show in this study that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show that leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell intrinsic and specific to activated effector T cells, as naive T cells and regulatory T cells did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Previous mathematical models for hepatic and tissue one-carbon metabolism have been combined and extended to include a blood plasma compartment. We use this model to study how the concentrations of metabolites that can be measured in the plasma are related to their respective intracellular concentrations. METHODS: The model consists of a set of ordinary differential equations, one for each metabolite in each compartment, and kinetic equations for metabolism and for transport between compartments. The model was validated by comparison to a variety of experimental data such as the methionine load test and variation in folate intake. We further extended this model by introducing random and systematic variation in enzyme activity. OUTCOMES AND CONCLUSIONS: A database of 10,000 virtual individuals was generated, each with a quantitatively different one-carbon metabolism. Our population has distributions of folate and homocysteine in the plasma and tissues that are similar to those found in the NHANES data. The model reproduces many other sets of clinical data. We show that tissue and plasma folate is highly correlated, but liver and plasma folate much less so. Oxidative stress increases the plasma S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) ratio. We show that many relationships among variables are nonlinear and in many cases we provide explanations. Sampling of subpopulations produces dramatically different apparent associations among variables. The model can be used to simulate populations with polymorphisms in genes for folate metabolism and variations in dietary input.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Despite the high prevalence and global impact of knee osteoarthritis (KOA), current treatments are palliative. No disease modifying anti-osteoarthritic drug (DMOAD) has been approved. We recently demonstrated significant involvement of uric acid and activation of the innate immune response in osteoarthritis (OA) pathology and progression, suggesting that traditional gout therapy may be beneficial for OA. We therefore assess colchicine, an existing commercially available agent for gout, for a new therapeutic application in KOA. METHODS/DESIGN: COLKOA is a double-blind, placebo-controlled, randomized trial comparing a 16-week treatment with standard daily dose oral colchicine to placebo for KOA. A total of 120 participants with symptomatic KOA will be recruited from a single center in Singapore. The primary end point is 30% improvement in total Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score at week 16. Secondary end points include improvement in pain, physical function, and quality of life and change in serum, urine and synovial fluid biomarkers of cartilage metabolism and inflammation. A magnetic resonance imaging (MRI) substudy will be conducted in 20 participants to evaluate change in synovitis. Logistic regression will be used to compare changes between groups in an intention-to-treat analysis. DISCUSSION: The COLKOA trial is designed to evaluate whether commercially available colchicine is effective for improving signs and symptoms of KOA, and reducing synovial fluid, serum and urine inflammatory and biochemical joint degradation biomarkers. These biomarkers should provide insights into the underlying mechanism of therapeutic response. This trial will potentially provide data to support a new treatment option for KOA. TRIAL REGISTRATION: The trial has been registered at clinicaltrials.gov as NCT02176460 . Date of registration: 26 June 2014.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Traumatic brain injury (TBI) has been increasingly accepted as a major external risk factor for neurodegenerative morbidity and mortality. Recent evidence indicates that the resultant chronic neurobiological sequelae following head trauma may, at least in part, contribute to a pathologically distinct disease known as Chronic Traumatic Encephalopathy (CTE). The clinical manifestation of CTE is variable, but the symptoms of this progressive disease include impaired memory and cognition, affective disorders (i.e., impulsivity, aggression, depression, suicidality, etc.), and diminished motor control. Notably, mounting evidence suggests that the pathology contributing to CTE may be caused by repetitive exposure to subconcussive hits to the head, even in those with no history of a clinically evident head injury. Given the millions of athletes and military personnel with potential exposure to repetitive subconcussive insults and TBI, CTE represents an important public health issue. However, the incidence rates and pathological mechanisms are still largely unknown, primarily due to the fact that there is no in vivo diagnostic tool. The primary objective of this manuscript is to address this limitation and discuss potential neuroimaging modalities that may be capable of diagnosing CTE in vivo through the detection of tau and other known pathological features. Additionally, we will discuss the challenges of TBI research, outline the known pathology of CTE (with an emphasis on Tau), review current neuroimaging modalities to assess the potential routes for in vivo diagnosis, and discuss the future directions of CTE research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Review of: Philip E. Agre and Stanley J. Rosenschein (eds), Computational Theories of Interaction and Agency, MIT Press (1996), ISBN: 978-0262510905

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Review of: Peter Reimann and Hans Spada (eds), Learning in Humans and Machines: Towards an Interdisciplinary Learning Science, Pergamon. (1995). ISBN: 978-0080425696

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epidemiological, biochemical, animal model and clinical trial data described in this overview strongly suggest that polyunsaturated fatty acids, particularly n-6 fatty acids, have a role in the pathogenesis and treatment of multiple sclerosis (MS). Data presented provides further evidence for a disturbance in n-6 fatty acid metabolism in MS. Disturbance of n-6 fatty acid metabolism and dysregulation of cytokines are shown to be linked and a "proof of concept clinical trial" further supports such a hypothesis. In a randomised double-blind, placebo controlled trial of a high dose and low dose selected GLA (18:3n-6)-rich oil and placebo control, the high dose had a marked clinical effect in relapsing-remitting MS, significantly decreasing the relapse rate and the progression of disease. Laboratory findings paralleled clinical changes in the placebo group in that production of mononuclear cell pro-inflammatory cytokines (TNF-alpha, IL-1 beta) was increased and anti-inflammatory TGF-beta markedly decreased with loss of membrane n-6 fatty acids linoleic (18:2n-6) and arachidonic acids (20:4n-6). In contrast there were no such changes in the high dose group. The improvement in disability (Expanded Disability Status Scale) in the high dose suggests there maybe a beneficial effect on neuronal lipids and neural function in MS. Thus disturbed n-6 fatty acid metabolism in MS gives rise to loss of membrane long chain n-6 fatty acids and loss of the anti-inflammatory regulatory cytokine TGF-beta, particularly during the relapse phase, as well as loss of these important neural fatty acids for CNS structure and function and consequent long term neurological deficit in MS.