941 resultados para membrana ceramica idrogeno perovskite tape casting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow fibre membranes of mixed conducting perovskite La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) were prepared via the combined phase inversion and sintering technique. The fibres were tested for air separation with a home-made reactor under the oxygen partial pressure gradient generated by the air/He streams. Some fibres were in situ activated by introducing methane in the He sweeping gas at high temperatures. The activated membranes with new morphology were created by transforming the inner densified surface layer to a porous structure. Compared to the original membranes, the activated gave appreciable higher oxygen fluxes. At 800 °C, the oxygen fluxes were increased by a factor of 10 after activation was carried out at 1000 °C for 1 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen production by air separation is of great importance in both environmental and industrial processes as most large scale clean energy technologies require oxygen as feed gas. Currently the conventional cryogenic air separation unit is a major economic impediment to the deployment of these clean energy technologies with carbon capture (i.e. oxy-fuel combustion ). Dense ceramic perovskite membranes are envisaged to replace the cryogenics and reduce O2 production costs by 35% or more; which can significantly cut the energy penalty by 50% when integrated in oxy-fuel power plant for CO2 capture. This paper reviews the current progress in the development of dense ceramic membranes for oxygen production. The principles, advantages or disadvantages, and the crucial problems of all kinds of membranes are discussed. Materials development, optimisation guidelines and suggestions for future research direction are also included. Some areas already previously reviewed are treated with less attention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double perovskite Ba2Bi0.1Sc0.2Co1.7O6-x (BBSC) demonstrates low polarization resistance between 600 and 750 °C due to the high oxygen reduction rate of BBSC as reflected by its large DV and k values, which are derived from the face centered cubic structure and high cobalt content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bi doping of SrFeO3d results in the formation of a structure with high symmetry and extraordinary electrochemical performance for Bi0.5Sr0.5FeO3-d, which is capable of competing effectively with the current Co-based cathode benchmark with additional advantages of lower thermal expansion and cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1706 files in 35 folders, containing 388MB. Comprises plots, figures, and manuscripts. The data contains x-ray diffraction patterns and electrochemical data of lanthanum based perovskite oxides (e.g. 9 different perovskite compositions e.g. LaNiO3, LaCoO3, LaFeO3, LaMnO3, LaCrO3, LaNi0.5Co0.5O3 and LaNi0.5Fe0.5O3, LaNi0.5Mn0.5O3 and LaNi0.5Cr0.5O3) characterized using rotating ring disk electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

in situ high-temperature X-ray diffraction and thermal gravimetric- differential thermal analysis on room-temperature powder, as well as X-ray diffraction, Raman spectroscopy, and transmission electron microscopy on quenched powder, were applied to study crystal structure and phase transformations in Ba2Bi0.1Sc0.2Co 1.7O6-x (BBSC). Heating BBSC in air to over 800 °C produces a pure cubic phase with space group Fm3m (no. 225), and cooling down below 800 °C leads to a mixture of three noncubic phases including an unknown phase between 200 and 650 °C, a 2H hexagonal BaCoO3 with space group P63/mmc (no. 194) between 600 and 800 °C, and an intermediate phase at 800 °C. These three phases exist concurrently with the major cubic phase. The weight gain and loss between 300 and 900 °C suggest the occurrence of cobalt reduction, oxidation, and disproportion reactions with dominant reduction reaction at above 600 °C. The thermal expansion of BBSC was also examined by dilatometry. BBSC has a highly temperature-dependent thermal expansion coefficient which relates well with its structure evolution. Furthermore, the oxygen reduction reaction (ORR) of BBSC was probed by symmetrical cell and three-electrode configurations. The presence of hexagonal phase at 700 °C rarely affects the ORR performance of BBSC as evidenced by a slight increase of its area-specific resistance (ASR) value following 48 h of testing in this three-electrode configuration. This observation is in contrast to the commonly held point of view that noncubic phase deteriorates performance of perovskite compounds (especially in oxygen transport applications). Moreover, cathodic polarization treatment, for example, current discharge from BBSC (tested in three-electrode configuration), can be utilized to recover the original ORR performance. The cubic structure seems to be retained on the cathodic polarization - the normal cathode operating mode in fuel cells. Stable 72-h performance of BBSC in cathodic polarization mode further confirms that despite the presence of phase impurities, BBSC still demonstrates good performance between 500 and 700 °C, the desired intermediate operating temperature in solid oxide fuel cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, LaMO3 and LaNi0.5M0.5O3 (M = Ni, Co, Fe, Mn and Cr) perovskite oxide electrocatalysts were synthesized by a combined ethylenediaminetetraacetic acid-citrate complexation technique and subsequent calcinations at 1000 °C in air. Their powder X-ray diffraction patterns demonstrate the formation of a specific crystalline structure for each composition. The catalytic property of these materials toward the oxygen reduction reaction (ORR) was studied in alkaline potassium hydroxide solution using the rotating disk and rotating ring-disk electrode techniques. Carbon is considered to be a crucial additive component because its addition into perovskite oxide leads to optimized ORR current density. For LaMO3 (M = Ni, Co, Fe, Mn and Cr)), in terms of the ORR current densities, the performance is enhanced in the order of LaCrO3, LaFeO3, LaNiO3, LaMnO3, and LaCoO3. For LaNi0.5M0.5O3, the ORR current performance is enhanced in the order of LaNi0.5Fe0.5O3, LaNi0.5Co0.5O3, LaNi0.5Cr0.5O3, and LaNi0.5Mn0.5O3. Overall, LaCoO3 demonstrates the best performance. Most notably, substituting half of the nickel with cobalt, iron, manganese, or chromium translates the ORR to a more positive onset potential, suggesting the beneficial catalytic effect of two transition metal cations with Mn as the most promising candidate. Koutecky–Levich analysis on the ORR current densities of all compositions indicates that the four-electron pathway is favored on these oxides, which are consistent with hydroperoxide ion formation of <2%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perovskite oxide offers an attractive alternative to precious metal electrocatalysts given its low cost and high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity. The results obtained in this work suggest a correlation of crystal structure with ORR and OER activity for LaNiO3-?. LaNiO3-? perovskites with different crystal structure were obtained by heating at different temperatures, e.g., 400, 600, and 800 C followed by quenching into room temperature. Cubic structure (relative to rhombohedral) leads to higher ORR and OER activity as well as enhanced bi-functional electrocatalytic activity, e.g., lower difference in potential between the ORR at -3 mA cm-2 and OER at 5 mA cm -2 (?E). Therefore, this work shows the possibility to adjust bi-functional activity through a simple process. This correlation may also extend to other perovskite oxide systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The castability and microstructures produced from strip casting simulations of three compositions in the 200 series stainless steels have been examined. The nucleation density was similar for all three compositions.The as-cast microstructure showed very fine austenite grains of 10–20 μm in width. Retained delta ferrite was observed in the inter-dendritic regions, and was likely to be stabilised by the segregation of Cr into these regions. An analysis of the crystallography expected of different solidification sequences is presented, but a strict adherence to the Kurdjumov-Sachs orientation relationship was not found in these samples.