951 resultados para maximum rainfall
Resumo:
Summer rainfall over China has experienced substantial variability on longer time scales during the last century, and the question remains whether this is due to natural, internal variability or is part of the emerging signal of anthropogenic climate change. Using the best available observations over China, the decadal variability and recent trends in summer rainfall are investigated with the emphasis on changes in the seasonal evolution and on the temporal characteristics of daily rainfall. The possible relationships with global warming are reassessed. Substantial decadal variability in summer rainfall has been confirmed during the period 1958–2008; this is not unique to this period but is also seen in the earlier decades of the twentieth century. Two dominant patterns of decadal variability have been identified that contribute substantially to the recent trend of southern flooding and northern drought. Natural decadal variability appears to dominate in general but in the cases of rainfall intensity and the frequency of rainfall days, particularly light rain days, then the dominant EOFs have a rather different character, being of one sign over most of China, and having principal components (PCs) that appear more trendlike. The increasing intensity of rainfall throughout China and the decrease in light rainfall days, particularly in the north, could at least partially be of anthropogenic origin, both global and regional, linked to increased greenhouse gases and increased aerosols.
Resumo:
Many climate models have problems simulating Indian summer monsoon rainfall and its variability, resulting in considerable uncertainty in future projections. Problems may relate to many factors, such as local effects of the formulation of physical parametrisation schemes, while common model biases that develop elsewhere within the climate system may also be important. Here we examine the extent and impact of cold sea surface temperature (SST) biases developing in the northern Arabian Sea in the CMIP5 multi-model ensemble, where such SST biases are shown to be common. Such biases have previously been shown to reduce monsoon rainfall in the Met Office Unified Model (MetUM) by weakening moisture fluxes incident upon India. The Arabian Sea SST biases in CMIP5 models consistently develop in winter, via strengthening of the winter monsoon circulation, and persist into spring and summer. A clear relationship exists between Arabian Sea cold SST bias and weak monsoon rainfall in CMIP5 models, similar to effects in the MetUM. Part of this effect may also relate to other factors, such as forcing of the early monsoon by spring-time excessive equatorial precipitation. Atmosphere-only future time-slice experiments show that Arabian Sea cold SST biases have potential to weaken future monsoon rainfall increases by limiting moisture flux acceleration through non-linearity of the Clausius-Clapeyron relationship. Analysis of CMIP5 model future scenario simulations suggests that, while such effects are likely small compared to other sources of uncertainty, models with large Arabian Sea cold SST biases suppress the range of potential outcomes for changes to future early monsoon rainfall.
Resumo:
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000- fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous–Paleogene (K–Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. Keywords: haldanes, biological time, scaling, pedomorphosis
Resumo:
The response of East Asian Summer Monsoon (EASM) precipitation to long term changes in regional anthropogenic aerosols (sulphate and black carbon) is explored in an atmospheric general circulation model, the atmospheric component of the UK High-Resolution Global Environment Model v1.2 (HiGAM). Separately, sulphur dioxide (SO2) and black carbon (BC) emissions in 1950 and 2000 over East Asia are used to drive model simulations, while emissions are kept constant at year 2000 level outside this region. The response of the EASM is examined by comparing simulations driven by aerosol emissions representative of 1950 and 2000. The aerosol radiative effects are also determined using an off-line radiative transfer model. During June, July and August, the EASM was not significantly changed as either SO2 or BC emissions increased from 1950 to 2000 levels. However, in September, precipitation is significantly decreased by 26.4% for sulphate aerosol and 14.6% for black carbon when emissions are at the 2000 level. Over 80% of the decrease is attributed to changes in convective precipitation. The cooler land surface temperature over China in September (0.8 °C for sulphate and 0.5 °C for black carbon) due to increased aerosols reduces the surface thermal contrast that supports the EASM circulation. However, mechanisms causing the surface temperature decrease in September are different between sulphate and BC experiments. In the sulphate experiment, the sulphate direct and the 1st indirect radiative effects contribute to the surface cooling. In the BC experiment, the BC direct effect is the main driver of the surface cooling, however, a decrease in low cloud cover due to the increased heating by BC absorption partially counteracts the direct effect. This results in a weaker land surface temperature response to BC changes than to sulphate changes. The resulting precipitation response is also weaker, and the responses of the monsoon circulation are different for sulphate and black carbon experiments. This study demonstrates a mechanism that links regional aerosol emission changes to the precipitation changes of the EASM, and it could be applied to help understand the future changes in EASM precipitation in CMIP5 simulations.
Resumo:
We present a new technique for correcting errors in radar estimates of rainfall due to attenuation which is based on the fact that any attenuating target will itself emit, and that this emission can be detected by the increased noise level in the radar receiver. The technique is being installed on the UK operational network, and for the first time, allows radome attenuation to be monitored using the increased noise at the higher beam elevations. This attenuation has a large azimuthal dependence but for an old radome can be up to 4 dB for rainfall rates of just 2–4 mm/h. This effect has been neglected in the past, but may be responsible for significant errors in rainfall estimates and in radar calibrations using gauges. The extra noise at low radar elevations provides an estimate of the total path integrated attenuation of nearby storms; this total attenuation can then be used as a constraint for gate-by-gate or polarimetric correction algorithms.
Resumo:
The development of NWP models with grid spacing down to 1 km should produce more realistic forecasts of convective storms. However, greater realism does not necessarily mean more accurate precipitation forecasts. The rapid growth of errors on small scales in conjunction with preexisting errors on larger scales may limit the usefulness of such models. The purpose of this paper is to examine whether improved model resolution alone is able to produce more skillful precipitation forecasts on useful scales, and how the skill varies with spatial scale. A verification method will be described in which skill is determined from a comparison of rainfall forecasts with radar using fractional coverage over different sized areas. The Met Office Unified Model was run with grid spacings of 12, 4, and 1 km for 10 days in which convection occurred during the summers of 2003 and 2004. All forecasts were run from 12-km initial states for a clean comparison. The results show that the 1-km model was the most skillful over all but the smallest scales (approximately <10–15 km). A measure of acceptable skill was defined; this was attained by the 1-km model at scales around 40–70 km, some 10–20 km less than that of the 12-km model. The biggest improvement occurred for heavier, more localized rain, despite it being more difficult to predict. The 4-km model did not improve much on the 12-km model because of the difficulties of representing convection at that resolution, which was accentuated by the spinup from 12-km fields.
Resumo:
The realistic representation of rainfall on the local scale in climate models remains a key challenge. Realism encompasses the full spatial and temporal structure of rainfall, and is a key indicator of model skill in representing the underlying processes. In particular, if rainfall is more realistic in a climate model, there is greater confidence in its projections of future change. In this study, the realism of rainfall in a very high-resolution (1.5 km) regional climate model (RCM) is compared to a coarser-resolution 12-km RCM. This is the first time a convection-permitting model has been run for an extended period (1989–2008) over a region of the United Kingdom, allowing the characteristics of rainfall to be evaluated in a climatological sense. In particular, the duration and spatial extent of hourly rainfall across the southern United Kingdom is examined, with a key focus on heavy rainfall. Rainfall in the 1.5-km RCM is found to be much more realistic than in the 12-km RCM. In the 12-km RCM, heavy rain events are not heavy enough, and tend to be too persistent and widespread. While the 1.5-km model does have a tendency for heavy rain to be too intense, it still gives a much better representation of its duration and spatial extent. Long-standing problems in climate models, such as the tendency for too much persistent light rain and errors in the diurnal cycle, are also considerably reduced in the 1.5-km RCM. Biases in the 12-km RCM appear to be linked to deficiencies in the representation of convection.
Resumo:
On the 8 January 2005 the city of Carlisle in north-west England was severely flooded following 2 days of almost continuous rain over the nearby hills. Orographic enhancement of the rain through the seeder–feeder mechanism led to the very high rainfall totals. This paper shows the impact of running the Met Office Unified Model (UM) with a grid spacing of 4 and 1 km compared to the 12 km available at the time of the event. These forecasts, and forecasts from the Nimrod nowcasting system, were fed into the Probability Distributed Model (PDM) to predict river flow at the outlets of two catchments important for flood warning. The results show the benefit of increased resolution in the UM, the benefit of coupling the high-resolution rainfall forecasts to the PDM and the improvement in timeliness of flood warning that might have been possible. Copyright © 2008 Royal Meteorological Society
Resumo:
The effects of different water application rates (3, 10, 15 and 30 mm/h) and of topsoil removal on the rate of downward water movement through the cryoturbated chalk zone in southern England were investigated in situ. During and after each application of water, changes in water content and matric potential of the profile were monitored and percolate was collected in troughs. The measured water breakthrough time showed that water moved to 1.2 m depth quickly (in 8.2 h) even with application rate as low as 3 mm/h and that the time was only 3 h when water was applied at a rate of 15 mm/ h. These breakthrough times were about 150 and 422 fold shorter, respectively, than those expected if the water had been conducted by the matrix alone. Percolate was collected in troughs within 3.5 h at 1.2 m depth when water was applied at 30 mm/h and the quantity collected indicated that a significant amount of the surface applied water moved downward through inter-aggregate pores. The small increase in volumetric water content (about 3%) in excess of matrix water content resulted in a large increase in pore water velocities, from 0.20 to 5.3 m/d. The presence of soil layer had effect on the time taken for water to travel through the cryoturbated chalk layer and in the soil layer, water took about 1-2 h to pass thorough, depending on the intensity.
Resumo:
Many reasons are being advanced for the current ‘food crisis’ including financial speculation,increased demand for grains, export bans on selected foodstuffs, inadequate grain stocks, higher oil prices, poor harvests and the use of crop lands for the production of biofuels. This paper reviews the present knowledge of recorded impacts of climate change and variability on crop production, in order to estimate its contribution to the current situation. Many studies demonstrate increased regional temperatures over the last 40 years (often through greater increases in minimum rather than maximum temperatures), but effects on crop yields are mixed. Distinguishing climate effects from changes in yield resulting from improved crop management and genotypes is difficult, but phenological changes affecting sowing, maturity and disease incidence are emerging. Anthropogenic factors appear to be a significant contributory factor to the observed decline in rainfall in southwestern and southeastern Australia, which reduced tradable wheat grain during 2007. Indirect effects of climate change through actions to mitigate or adapt to anticipated changes in climate are also evident. The amount of land diverted from crop production to biofuel production is small but has had a disproportionate effect on tradable grains from the USA. Adaptation of crop production practices and other components of the food system contributing to food security in response to variable and changing climates have occurred, but those households without adequate livelihoods are most in danger of becoming food insecure. Overall, we conclude that changing climate is a small contributor to the current food crisis but cannot be ignored.
Resumo:
Atmospheric CO2 concentration is hypothesized to influence vegetation distribution via tree–grass competition, with higher CO2 concentrations favouring trees. The stable carbon isotope (δ13C) signature of vegetation is influenced by the relative importance of C4 plants (including most tropical grasses) and C3 plants (including nearly all trees), and the degree of stomatal closure – a response to aridity – in C3 plants. Compound-specific δ13C analyses of leaf-wax biomarkers in sediment cores of an offshore South Atlantic transect are used here as a record of vegetation changes in subequatorial Africa. These data suggest a large increase in C3 relative to C4 plant dominance after the Last Glacial Maximum. Using a process-based biogeography model that explicitly simulates 13C discrimination, it is shown that precipitation and temperature changes cannot explain the observed shift in δ13C values. The physiological effect of increasing CO2 concentration is decisive, altering the C3/C4 balance and bringing the simulated and observed δ13C values into line. It is concluded that CO2 concentration itself was a key agent of vegetation change in tropical southern Africa during the last glacial–interglacial transition. Two additional inferences follow. First, long-term variations in terrestrial δ13Cvalues are not simply a proxy for regional rainfall, as has sometimes been assumed. Although precipitation and temperature changes have had major effects on vegetation in many regions of the world during the period between the Last Glacial Maximum and recent times, CO2 effects must also be taken into account, especially when reconstructing changes in climate between glacial and interglacial states. Second, rising CO2 concentration today is likely to be influencing tree–grass competition in a similar way, and thus contributing to the "woody thickening" observed in savannas worldwide. This second inference points to the importance of experiments to determine how vegetation composition in savannas is likely to be influenced by the continuing rise of CO2 concentration.
Resumo:
An objective identification and ranking of extraordinary rainfall events for Northwest Italy is established using time series of annual precipitation maxima for 1938–2002 at over 200 stations. Rainfall annual maxima are considered for five reference durations (1, 3, 6, 12, and 24 h). In a first step, a day is classified as an extraordinary rainfall day when a regional threshold calculated on the basis of a two-components extreme value distribution is exceeded for at least one of the stations. Second, a clustering procedure taking into account the different rainfall durations is applied to the identified 163 events. Third, a division into six clusters is chosen using Ward's distance criteria. It is found that two of these clusters include the seven strongest events as quantified from a newly developed measure of intensity which combines rainfall intensities and spatial extension. Two other clusters include the weakest 72% historical events. The obtained clusters are analyzed in terms of typical synoptic characteristics. The two top clusters are characterized by strong and persistent upper air troughs inducing not only moisture advection from the North Atlantic into the Western Mediterranean but also strong northward flow towards the southern Alpine ranges. Humidity transports from the North Atlantic are less important for the weaker clusters. We conclude that moisture advection from the North Atlantic plays a relevant role in the magnitude of the extraordinary events over Northwest Italy.
Resumo:
This study aims to characterise the rainfall exceptionality and the meteorological context of the 20 February 2010 flash-floods in Madeira (Portugal). Daily and hourly precipitation records from the available rain-gauge station networks are evaluated in order to reconstitute the temporal evolution of the rainstorm, as its geographic incidence, contributing to understand the flash-flood dynamics and the type and spatial distribution of the associated impacts. The exceptionality of the rainstorm is further confirmed by the return period associated with the daily precipitation registered at the two long-term record stations, with 146.9 mm observed in the city of Funchal and 333.8 mm on the mountain top, corresponding to an estimated return period of approximately 290 yr and 90 yr, respectively. Furthermore, the synoptic associated situation responsible for the flash-floods is analysed using different sources of information, e.g., weather charts, reanalysis data, Meteosat images and radiosounding data, with the focus on two main issues: (1) the dynamical conditions that promoted such anomalous humidity availability over the Madeira region on 20 February 2010 and (2) the uplift mechanism that induced deep convection activity.