986 resultados para main components
Resumo:
In the present work, the more important parameters of the heat pump system and of solar assisted heat pump systems were analysed in a quantitative way. Ideal and real Rankine cycles applied to the heat pump, with and without subcooling and superheating were studied using practical recommended values for their thermodynamics parameters. Comparative characteristics of refrigerants here analysed looking for their applicability in heat pumps for domestic heating and their effect in the performance of the system. Curves for the variation of the coefficient of performance as a function of condensing and evaporating temperatures were prepared for R12. Air, water and earth as low-grade heat sources and basic heat pump design factors for integrated heat pumps and thermal stores and for solar assisted heat pump-series, parallel and dual-systems were studied. The analysis of the relative performance of these systems demonstrated that the dual system presents advantages in domestic applications. An account of energy requirements for space and hater heating in the domestic sector in the O.K. is presented. The expected primary energy savings by using heat pumps to provide for the heating demand of the domestic sector was found to be of the order of 7%. The availability of solar energy in the U.K. climatic conditions and the characteristics of the solar radiation here studied. Tables and graphical representations in order to calculate the incident solar radiation over a tilted roof were prepared and are given in this study in section IV. In order to analyse and calculate the heating load for the system, new mathematical and graphical relations were developed in section V. A domestic space and water heating system is described and studied. It comprises three main components: a solar radiation absorber, the normal roof of a house, a split heat pump and a thermal store. A mathematical study of the heat exchange characteristics in the roof structure was done. This permits to evaluate the energy collected by the roof acting as a radiation absorber and its efficiency. An indication of the relative contributions from the three low-grade sources: ambient air, solar boost and heat loss from the house to the roof space during operation is given in section VI, together with the average seasonal performance and the energy saving for a prototype system tested at the University of Aston. The seasonal performance as found to be 2.6 and the energy savings by using the system studied 61%. A new store configuration to reduce wasted heat losses is also discussed in section VI.
Resumo:
Cadbury showed concern for the welfare of its labour force in a variety of ways and not least in the provision of educational and educative-recreational facilities. The firm regarded the education of employees as having a positive effect on the efficiency of the business at the same time as being of benefit to the individual, the local community and the nation. The life-long education of people was seen as essential for personal fulfilament, social improvement, economic competitiveness and the proper functioning of democratic procedures. The educational system built up at Cadbury, and the philosophy on which it was founded, acquired both a domestic and international reputation. Its main components were the day continuation education of juniors; the Bournville Works Evening Institute; vocational and non-vocational scholarships; emphasis on the primary importance of general education as a basis for life, work and technical training; stress on equality of educational opportunity for females; and leisure and sporting amenities which the firm felt to be educative in the sense that they contributed to personal psychological and physical development and social skills. The system was primarily shaped and constructed in the first three decades of the twentieth century and went into decline and eventual demise in the 1960's and 1970's as a result of economic pressures, social changes, enhanced state arrangements for education, shifts in Cadbury management thinking and the merger with Schweppes in 1969.
Resumo:
This thesis investigates changes in the oscillatory dynamics in key areas of the pain matrix during different modalities of pain. Gamma oscillations were seen in the primary somatosensory cortex in response to somatic electrical stimulation at painful and non-painful intensities. The strength of the gamma oscillations was found to relate to the intensity of the stimulus. Gamma oscillations were not seen during distal oesophageal electrical stimulation or the cold pressor test. Gamma oscillations were not seen in all participants during somatic electrical stimulation, however clear evoked responses from SI were seen in everyone. During a train of electrical pulses to the median nerve and the digit, a decrease in the frequency of the gamma oscillations was seen across the duration of the train. During a train of electrical stimuli to the median nerve and the digit, gamma oscillations were seen at ~20-100ms following stimulus onset and at frequencies between 30-100Hz. This gamma response was found to have a strong evoked component. Following a single electrical pulse to the digit, gamma oscillations were seen at 100-250ms and between 60-95Hz and were not temporally coincident with the main components of the evoked response. These results suggest that gamma oscillations may have an important role in encoding different aspects of sensory stimuli within their characteristics such as strength and frequency. These findings help to elucidate how somatic stimuli are processed within the cortex which in turn may be used to understand abnormal cases of somatosensory processing.
Resumo:
Liquid desiccant systems are of potential interest as a means of cooling greenhouses to temperatures below those achieved by conventional means. However, only very little work has been done on this technology with previous workers focussing on the cooling of human dwellings using expensive desiccants such as lithium salts. In this study we are designing a system for greenhouse cooling based on magnesium chloride desiccant which is an abundant and non-toxic substance. Magnesium chloride is found in seawater, for example, and is a by-product from solar salt works. We have carried out a detailed experimental study of the relevant properties of magnesium rich solutions. In addition we have constructed a test rig that includes the main components of the cooling system, namely a dehumidifier and solar regenerator. The dehumidifier is a cross-flow device that consists of a structured packing made of corrugated cellulose paper sheets with different flute angles and embedded cooling tubes. The regenerator is of the open type with insulated backing and fabric covering to spread the flow of desiccant solution. Alongside these experiments we are developing a mathematical model in gPROMS® that combines and simulates the heat and mass transfer processes in these components. The model can be applied to various geographical locations. Here we report predictions for Havana (Cuba) and Manila (Philippines), where we find that average wet-bulb temperatures can be lowered by 2.2 and 3°C, respectively, during the month of May.
Resumo:
In an Arab oil producing country in the Middle East such as Kuwait, Oil industry is considered as the main and most important industry of the country. This industry’s importance emerged from the significant role it plays in both country’s national economy and also global economy. Moreover, Oil industry’s criticality comes from its interconnectivity with national security and power in the Middle East region. Hence, conducting this research in this crucial industry had certainly added values to companies in this industry as it investigated thoroughly the main components of the TQM implementation process and identified which components affects significantly TQM’s implementation and its gained business results. In addition, as the Oil sector is a large sector that is known for its richness of employees with different national cultures and backgrounds. Thus, this culture-heterogeneous industry seems to be the most appropriate environment to address and satisfy a need in the literature to investigate the national culture values’ effects on TQM implementation process. Furthermore, this research has developed a new conceptual model of TQM implementation process in the Kuwaiti Oil industry that applies in general to operations and productions organizations at the Kuwaiti business environment and in specific to organizations in the Oil industry, as well it serves as a good theoretical model for improving operations and production level of the oil industry in other developing and developed countries. Thus, such research findings minimized the literature’s gap found the limited amount of empirical research of TQM implementation in well-developed industries existing in an Arab, developing countries and specifically in Kuwait, where there was no coherent national model for a universal TQM implementation in the Kuwaiti Oil industry in specific and Kuwaiti business environment in general. Finally, this newly developed research framework, which emerged from the literature search, was validated by rigorous quantitative analysis tools including SPSS and Structural Equation Modeling. The quantitative findings of questionnaires collected were supported by the qualitative findings of interviews conducted.
Resumo:
The Universal Networking Language (UNL) is an interlingua designed to be the base of several natural language processing systems aiming to support multilinguality in internet. One of the main components of the language is the dictionary of Universal Words (UWs), which links the vocabularies of the different languages involved in the project. As any NLP system, coverage and accuracy in its lexical resources are crucial for the development of the system. In this paper, the authors describes how a large coverage UWs dictionary was automatically created, based on an existent and well known resource like the English WordNet. Other aspects like implementation details and the evaluation of the final UW set are also depicted.
Resumo:
Евгений Николов, Димитрина Полимирова - Докладът представя текущото състояние на “облачните изчисления” и “облачните информационни атаки” в светлината на компютърната вирусология и информационната сигурност. Обсъдени са категориите “облачни възможни информационни атаки” и “облачни успешни информационни атаки”. Коментирана е архитектурата на “облачните изчисления” и основните компоненти, които изграждат тяхната инфраструктура, съответно “клиенти” (“clients”), „центрове за съхранение на данни“ (“datacenters”) и „разпределени сървъри“ (“dirstributed servers”). Коментирани са и услугите, които се предлагат от “облачните изчисления” – SaaS, HaaS и PaaS. Посочени са предимствата и недостатъците на компонентите и услугите по отношение на “облачните информационни атаки”. Направен е анализ на текущото състояние на “облачните информационни атаки” на територията на България, Балканския полуостров и Югоизточна Европа по отношение на компонентите и на услугите. Резултатите са представени под формата на 3D графични обекти. На края са направени съответните изводи и препоръки под формата на заключение.
Resumo:
The paper describes three software packages - the main components of a software system for processing and web-presentation of Bulgarian language resources – parallel corpora and bilingual dictionaries. The author briefly presents current versions of the core components “Dictionary” and “Corpus” as well as the recently developed component “Connection” that links both “Dictionary” and “Corpus”. The components main functionalities are described as well. Some examples of the usage of the system’s web-applications are included.
Resumo:
Liquid desiccant cooling systems (LDCS) are energy efficient means of providing cooling, especially when powered by low-grade thermal sources. In this paper, the underlying principles of operation of desiccant cooling systems are examined, and the main components (dehumidifier, evaporative cooler and regenerator) of the LDCS are reviewed. The evaporative cooler can take the form of direct, indirect or semi-indirect. Relative to the direct type, the indirect type is generally less effective. Nonetheless, a certain variant of the indirect type - namely dew-point evaporative cooler - is found to be the most effective amongst all. The dehumidifier and the regenerator can be of the same type of equipment: packed tower and falling film are popular choices, especially when fitted with an internal heat exchanger. The energy requirement of the regenerator can be supplied from solar thermal collectors, of which a solar pond is an interesting option especially when a large scale or storage capability is desired.
Resumo:
Soils play a central role in the dynamics of biospheric carbon and in climate change. They contain the largest carbon stock of terrestrial ecosystems and return to the atmosphere a significant proportion of carbon fixed by photosynthesis. Soils of tropical forests are tremendously important in the carbon cycle because they receive the largest organic matter inputs, they have the largest respiration rates, and they are among the largest carbon reservoirs among world soils. This research assesses the main components of the soil carbon dynamics in primary (PF) and secondary (SF) tropical forests in Colombia. I evaluated the production, stocks, and decomposition rates of aboveground detritus as well as the stocks, growth, mortality, and decomposition of fine roots in these two forest types. Soil carbon outputs were evaluated as total soil, heterotrophic, and root respiration. The stocks of soil organic carbon down to 4 m deep in these two cover types and in degraded pastures (PAS) were also evaluated. ^ Soil inputs of organic carbon from above and belowground sources were lower in SF than in PF. Litterfall in SF was 58% and production of fine root detritus was 60% of that in PF. When production of woody detritus and palm fronds was considered, the difference between these forest types was even larger. However, outputs of mineral carbon through heterotrophic soil respiration were similar; in SF they equaled 97% of those in PF. As a result, soil carbon balance was positive in PF and negative in SF. Despite that soil carbon balances suggest that soils of SF are losing carbon, soil carbon stocks of SF were higher than of degraded pastures, suggesting that they have already started to recover soil carbon stocks lost under degraded pastures. This discrepancy can be partially explained by the effect of drier conditions on heterotrophic soil respiration as a consequence of a moderate El Niño event during the period of soil respiration measurements. The positive carbon balance in soils of PF despite the El Niño event, suggests that soils of PF accumulated about 664 Kg C ha−1 yr−1. Therefore, soil carbon dynamics mainly depended on successional status of vegetation and on climatic conditions. ^
Resumo:
The 400-km-wide, low gradient Laptev Sea continental shelf consists of flat terrace-like features at regular depth intervals from 10 to 40 m below present sea level. The five large submarine valleys traversing the shelf do not continuously grade seaward, but contain elongated, closed basins. These terraces and closed basins plus deltaic sediments associated with the submarine valleys quite possibly mark sea level Stillstands, and enable reconstruction of the paleogeography of the Laptev Sea shore line at five periods during post-Wisconsin (Holocene) time. Radiocarbon dates on the silty-clay to clayey-silt sediments from cores of the northeastern Laptev Sea indicate average sedimentation intensity of 2 to 15 mg/cm2/yr. The presence of manganese nodules and crusts in surface samples from less than 55 m depths and a general decrease in total foraminiferal abundances with depth in the cores suggest that the present deposition rate is less than when sea level was lower. The main components of the shelf deposits are near- shore sediments which were spread over the shelf as Holocene sea level fluctuated and marine currents distributed modern fine sediment. Rare silty-sand layers and the coarser nuclei of the manganese crusts and nodules indicate ice rafting. However, this mechanism is probably only locally important as a significant transporting agent.
Resumo:
The first Air Chemistry Observatory at the German Antarctic station Georg von Neumayer (GvN) was operated for 10 years from 1982 to 1991. The focus of the established observational programme was on characterizing the physical properties and chemical composition of the aerosol, as well as on monitoring the changing trace gas composition of the background atmosphere, especially concerning greenhouse gases. The observatory was designed by the Institut für Umweltphysik, University of Heidelberg (UHEIIUP). The experiments were installed inside the bivouac lodge, mounted on a sledge and put upon a snow hill to prevent snow accumulation during blizzards. All experiments were under daily control and daily performance protocols were documented. A ventilated stainless steel inlet stack (total height about 3-4 m above the snow surface) with a 50% aerodynamic cut-off diameter around 7-10 µm at wind velocities between 4-10 m/s supplied all experiments with ambient air. Contamination free sampling was realized by several means: (i) The Air Chemistry Observatory was situated in a clean air area about 1500 m south of GvN. Due to the fact that northern wind directions are very rare, contamination from the base can be excluded for most of the time. (ii) The power supply (20 kW) is provided by a cable from the main station, thus no fuel-driven generator is operated in the very vicinity. (iii) Contamination-free sampling is controlled by the permanently recorded wind velocity, wind direction and by condensation particle concentration. Contamination was indicated if one of the following criteria were given: Wind direction within a 330°-30° sector, wind velocity <2.2 m/s or >17.5 m/s, or condensation particle concentrations >2500/cm**3 during summer, >800/cm**3 during spring/autumn and >400/cm**3 during winter. If one or a definable combination of these criteria were given, high volume aerosol sampling and part of the trace gas sampling were interrupted. Starting at 1982 through 1991-01-14 surface ozone was measured with an electrochemical concentration cell (ECC). Surface ozone mixing ratio are given in ppbv = parts per 10**9 by volume. The averaging time corresponds to the given time intervals in the data sheet. The accuracy of the values are better than ±1 ppbv and the detection limit is around 1.0 ppbv. Aerosols were sampled on two Whatman 541 cellulose filters in series and analyzed by ion chromatography at the UHEI-IUP. Generally, the sampling period was seven days but could be up to two weeks on occasion. The air flow was around 100 m**3/h and typically 10000-20000 m**3 of ambient air was forced through the filters for one sample. Concentration values are given in nanogram (ng) per 1 m**3 air at standard pressure and temperature (1013 mbar, 273.16 K). Uncertainties of the values were approximately ±10% to ±15% for the main components MSA, chloride, nitrate, sulfate and sodium, and between ±20% and ±30% for the minor species bromide, ammonium, potassium, magnesium and calcium.
Resumo:
Distributed Computing frameworks belong to a class of programming models that allow developers to
launch workloads on large clusters of machines. Due to the dramatic increase in the volume of
data gathered by ubiquitous computing devices, data analytic workloads have become a common
case among distributed computing applications, making Data Science an entire field of
Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,
a sequence of operations they wish to apply on this dataset, and some constraint they may have
related to their work (performances, QoS, budget, etc). However, it is actually extremely
difficult, without domain expertise, to perform data science. One need to select the right amount
and type of resources, pick up a framework, and configure it. Also, users are often running their
application in shared environments, ruled by schedulers expecting them to specify precisely their resource
needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and
profiling are hard, high dimensional problems that block users from making the right
configuration choices and determining the right amount of resources they need. Paradoxically, the
system is gathering a large amount of monitoring data at runtime, which remains unused.
In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit
monitoring data to learn about workloads, and process user requests into a tailored execution
context. In this work, we study different techniques that have been used to make steps toward
such system awareness, and explore a new way to do so by implementing machine learning
techniques to recommend a specific subset of system configurations for Apache Spark applications.
Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight
the complexity in choosing the best one for a given workload.
Resumo:
Les dinoflagellés sont des eucaryotes unicellulaires retrouvés dans la plupart des écosystèmes aquatiques du globe. Ces organismes amènent une contribution substantielle à la production primaire des océans, soit en tant que membre du phytoplancton, soit en tant que symbiontes des anthozoaires formant les récifs coralliens. Malheureusement, ce rôle écologique majeur est souvent négligé face à la capacité de certaines espèces de dinoflagellés à former des fleurs d'eau, parfois d'étendue et de durée spectaculaires. Ces floraisons d'algues, communément appelées "marées rouges", peuvent avoir de graves conséquences sur les écosystèmes côtiers, sur les industries de la pêche et du tourisme, ainsi que sur la santé humaine. Un des facteurs souvent corrélé avec la formation des fleurs d'eau est une augmentation dans la concentration de nutriments, notamment l’azote et le phosphore. Le nitrate est un des composants principaux retrouvés dans les eaux de ruissellement agricoles, mais également la forme d'azote bioaccessible la plus abondante dans les écosystèmes marins. Ainsi, l'agriculture humaine a contribué à magnifier significativement les problèmes associés aux marées rouges au niveau mondial. Cependant, la pollution ne peut pas expliquer à elle seule la formation et la persistance des fleurs d'eau, qui impliquent plusieurs facteurs biotiques et abiotiques. Il est particulièrement difficile d'évaluer l'importance relative qu'ont les ajouts de nitrate par rapport à ces autres facteurs, parce que le métabolisme du nitrate chez les dinoflagellés est largement méconnu. Le but principal de cette thèse vise à remédier à cette lacune. J'ai choisi Lingulodinium polyedrum comme modèle pour l'étude du métabolisme du nitrate, parce que ce dinoflagellé est facilement cultivable en laboratoire et qu'une étude transcriptomique a récemment fourni une liste de gènes pratiquement complète pour cette espèce. Il est également intéressant que certaines composantes moléculaires de la voie du nitrate chez cet organisme soient sous contrôle circadien. Ainsi, dans ce projet, j'ai utilisé des analyses physiologiques, biochimiques, transcriptomiques et bioinformatiques pour enrichir nos connaissances sur le métabolisme du nitrate des dinoflagellés et nous permettre de mieux apprécier le rôle de l'horloge circadienne dans la régulation de cette importante voie métabolique primaire. Je me suis tout d'abord penché sur les cas particuliers où des floraisons de dinoflagellés sont observées dans des conditions de carence en azote. Cette idée peut sembler contreintuitive, parce que l'ajout de nitrate plutôt que son épuisement dans le milieu est généralement associé aux floraisons d'algues. Cependant, j’ai découvert que lorsque du nitrate était ajouté à des cultures initialement carencées ou enrichies en azote, celles qui s'étaient acclimatées au stress d'azote arrivaient à survivre près de deux mois à haute densité cellulaire, alors que les cellules qui n'étaient pas acclimatées mourraient après deux semaines. En condition de carence d'azote sévère, les cellules arrivaient à survivre un peu plus de deux semaines et ce, en arrêtant leur cycle cellulaire et en diminuant leur activité photosynthétique. L’incapacité pour ces cellules carencées à synthétiser de nouveaux acides aminés dans un contexte où la photosynthèse était toujours active a mené à l’accumulation de carbone réduit sous forme de granules d’amidon et corps lipidiques. Curieusement, ces deux réserves de carbone se trouvaient à des pôles opposés de la cellule, suggérant un rôle fonctionnel à cette polarisation. La deuxième contribution de ma thèse fut d’identifier et de caractériser les premiers transporteurs de nitrate chez les dinoflagellés. J'ai découvert que Lingulodinium ne possédait que très peu de transporteurs comparativement à ce qui est observé chez les plantes et j'ai suggéré que seuls les membres de la famille des transporteurs de nitrate de haute affinité 2 (NRT2) étaient réellement impliqués dans le transport du nitrate. Le principal transporteur chez Lingulodinium était exprimé constitutivement, suggérant que l’acquisition du nitrate chez ce dinoflagellé se fondait majoritairement sur un système constitutif plutôt qu’inductible. Enfin, j'ai démontré que l'acquisition du nitrate chez Lingulodinium était régulée par la lumière et non par l'horloge circadienne, tel qu'il avait été proposé dans une étude antérieure. Finalement, j’ai utilisé une approche RNA-seq pour vérifier si certains transcrits de composantes impliquées dans le métabolisme du nitrate de Lingulodinium étaient sous contrôle circadien. Non seulement ai-je découvert qu’il n’y avait aucune variation journalière dans les niveaux des transcrits impliqués dans le métabolisme du nitrate, j’ai aussi constaté qu’il n’y avait aucune variation journalière pour n’importe quel ARN du transcriptome de Lingulodinium. Cette découverte a démontré que l’horloge de ce dinoflagellé n'avait pas besoin de transcription rythmique pour générer des rythmes physiologiques comme observé chez les autres eukaryotes.
Resumo:
The purpose of this case study is to determine the influence of the curriculum used by the Guatemalan Municipal Orchestra (GMO) upon the social interactions of its members. Social interactions include relations with families, teachers, and music colleagues. To determine this influence, the researcher framed the study using three main components: the impact of music in the development of children’s social skills; the curricula forming educational processes; and the characteristics of the Venezuela musical program, El Sistema. These foundations are explored via the tenets of participatory literacy. The data collection included interviews, surveys, and observation of students, parents, teachers, and administrative personnel. Two primary themes emerged from the data analysis: the development of a sense of community and the presence of intrinsic and external motivators implicit in the GMO environment. The final analysis suggests that curricular practices in the GMO positively influenced the development of students’ social interactions.