825 resultados para magnesium hydride


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnesium isotope composition of diagenetic dolomites and their adjacent pore fluids were studied in a 250 m thick sedimentary section drilled into the Peru Margin during Ocean Drilling Program (ODP) Leg 201 (Site 1230) and Leg 112 (Site 685). Previous studies revealed the presence of two types of dolomite: type I dolomite forms at ~ 6 m below seafloor (mbsf) due to an increase in alkalinity associated with anaerobic methane oxidation, and type II dolomite forms at focused sites below ~ 230 mbsf due to episodic inflow of deep-sourced fluids into an intense methanogenesis zone. The pore fluid delta 26Mg composition becomes progressively enriched in 26Mg with depth from values similar to seawater (i.e. -0.8 per mil, relative to DSM3 Mg reference material) in the top few meters below seafloor (mbsf) to 0.8 ± 0.2 per mil within the sediments located below 100 mbsf. Type I dolomites have a delta 26Mg of -3.5 per mil, and exhibit apparent dolomite-pore fluid fractionation factors of about -2.6 per mil consistent with previous studies of dolomite precipitation from seawater. In contrast, type II dolomites have delta 26Mg values ranging from -2.5 to -3.0 per mil and are up to -3.6 per mil lighter than the modern pore fluid Mg isotope composition. The enrichment of pore fluids in 26Mg and depletion in total Mg concentration below ~ 200 mbsf is likely the result of Mg isotope fractionation during dolomite formation, The 26Mg enrichment of pore fluids in the upper ~ 200 mbsf of the sediment sequence can be attributed to desorption of Mg from clay mineral surfaces. The obtained results indicate that Mg isotopes recorded in the diagenetic carbonate record can distinguish near surface versus deep formed dolomite demonstrating their usefulness as a paleo-diagenetic proxy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new technique for the precise and accurate determination of Ge stable isotope compositions has been developed and applied to silicate rocks and biogenic opal. The analyses were performed using a continuous flow hydride generation system coupled to a MC-ICP-MS. Samples have been purified through anion- and cation-exchange resins to separate Ge from matrix elements and eliminate potential isobaric interferences. Variations of 74Ge/70Ge ratios are expressed as d74Ge values relative to our internal standard and the long-term external reproducibility of the data is better than 0.2? for sample size as low as 15 ng of Ge. Data are presented for igneous and sedimentary rocks, and the overall variation is 2.4? in d74Ge, representing 12 times the uncertainty of the measurements and demonstrating that the terrestrial isotopic composition of Ge is not unique. Co-variations of 74Ge/70Ge, 73Ge/70Ge and 72Ge/70Ge ratios follow a mass-dependent behaviour and imply natural isotopic fractionation of Ge by physicochemical processes. The range of d74Ge in igneous rocks is only 0.25? without systematic differences among continental crust, oceanic crust or mantle material. On this basis, a Bulk Silicate Earth reservoir with a d74Ge of 1.3+/-0.2? can be defined. In contrast, modern biogenic opal such as marine sponges and authigenic glauconite displayed higher d74Ge values between 2.0? and 3.0?. This suggests that biogenic opal may be significantly enriched in light isotopes with respect to seawater and places a lower bound on the d74Ge of the seawater to +3.0?.This suggests that seawater is isotopically heavy relative to Bulk Silicate Earth and that biogenic opal may be significantly fractionated with respect to seawater. Deep-sea sediments are within the range of the Bulk Silicate Earth while Mesozoic deep-sea cherts (opal and quartz) have d74Ge values ranging from 0.7? to 2.0?. The variable values of the cherts cannot be explained by binary mixing between a biogenic component and a detrital component and are suggestive of enrichment in the light isotope of diagenetic quartz. Further work is now required to determine Ge isotope fractionation by siliceous organisms and to investigate the effect of diagenetic processes during chert lithification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present sea surface and upper thermocline temperature records (60-100 yr temporal resolution) spanning Marine Isotope Stage 3 (~24-62 kyr BP) from IMAGES Core MD01-2378 (121°47.27'E and 13°04.95'S; 1783 m water depth) located in the outflow area of the Indonesian Throughflow within the Timor Sea. Stable isotopes and Mg/Ca of the near surface dwelling planktonic foraminifer Globigerinoides ruber (white) and the upper thermocline dwelling Pulleniatina obliquiloculata reveal rapid changes in the thermal structure of the upper ocean during Heinrich Events. Thermocline warming and increased delta18Oseawater (P. obliquiloculata record) during Heinrich Events 3, 4, and 5 reflect weakening of the relatively cool and fresh thermocline flow and reduced export of less saline water from the North Pacific and Indonesian Seas to the tropical Indian Ocean. Three main factors influenced Indonesian Throughflow variability during Marine Isotope Stage 3: (1) global slow-down in thermohaline circulation during Heinrich Events triggered by northern hemisphere cooling; (2) increased freshwater export from the Java Sea into the Indonesian Throughflow controlled by rising sea level from ~60 to 47 ka and (3) insolation related changes in Australasian monsoon with associated migration of hydrological fronts between Indian Ocean and Indonesian Throughflow derived water masses at ~46-40 ka.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strontium, magnesium, oxygen, and carbon isotope profiles of the carbonate fraction of Hole 600C sediments support the lithologic and petrographic observations of extensive CaCO3 dissolution and recrystallization in the Pliocene basal section. Convective fluid flow through the sediments during the first 1 to 1.5 m.y. of the sedimentary history of these sediments may explain these observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laser ablation system connected to an inductively coupled plasma mass spectrometer was used to determine Mg/Ca ratios of the benthic foraminifera Oridorsalis umbonatus. A set of modern core top samples collected along a depth transect on the continental slope off Namibia (320-2300 m water depth; 2.9° to 10.4°C) was used to calibrate the Mg/Ca ratio against bottom water temperature. The resulting Mg/Ca-bottom water temperature relationship of O. umbonatus is described by the exponential equation Mg/Ca = 1.528*e**0.09*BWT. The temperature sensitivity of this equation is similar to previously published calibrations based on Cibicidoides species, suggesting that the Mg/Ca ratio of O. umbonatus is a valuable proxy for thermocline and deep water temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium concentrations in deep-sea sediment pore-fluids typically decrease down core due to net precipitation of dolomite or clay minerals in the sediments or underlying crust. To better characterize and differentiate these processes, we have measured magnesium isotopes in pore-fluids and sediment samples from Ocean Drilling Program sites (1082, 1086, 1012, 984, 1219, and 925) that span a range of oceanographic settings. At all sites, magnesium concentrations decrease with depth. At sites where diagenetic reactions are dominated by the respiration of organic carbon, pore-fluid d26Mg values increase with depth by as much as 2 per mil. Because carbonates preferentially incorporate 24Mg (low d26Mg), the increase in pore-fluid d26Mg values at these sites is consistent with the removal of magnesium in Mg-carbonate (dolomite). In contrast, at sites where the respiration of organic carbon is not important and/or weatherable minerals are abundant, pore-fluid d26Mg values decrease with depth by up to 2 per mil. The decline in pore-fluid d26Mg at these sites is consistent with a magnesium sink that is isotopically enriched relative to the pore-fluid. The identity of this enriched magnesium sink is likely clay minerals. Using a simple 1D diffusion-advection-reaction model of pore-fluid magnesium, we estimate rates of net magnesium uptake/removal and associated net magnesium isotope fractionation factors for sources and sinks at all sites. Independent estimates of magnesium isotope fractionation during dolomite precipitation from measured d26Mg values of dolomite samples from sites 1082 and 1012 are very similar to modeled net fractionation factors at these sites, suggesting that local exchange of magnesium between sediment and pore-fluid at these sites can be neglected. Our results indicate that the magnesium incorporated in dolomite is 2.0-2.7 per mil depleted in d26Mg relative to the precipitating fluid. Assuming local exchange of magnesium is minor at the rest of the studied sites, our results suggest that magnesium incorporated into clay minerals is enriched in d26Mg by 0 per mil to +1.25 per mil relative to the precipitating fluid. This work demonstrates the utility of magnesium isotopes as a tracer for magnesium sources/sinks in low-temperature aqueous systems.