904 resultados para liquid metal diffusion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carboxy Terminated Liquid Natural Rubber (CTNR) was prepared by photochemical reaction using maleic anhydride and masticated natural rubber (NR). The use of CTNR as an adhesive in bonding rubber to rubber and rubber to metal was studied. The peel strengths and lap shear strengths of the adherends which were bonded using CTNR were determined. The effect of using a tri isocyanate with CTNR in rubber to metal bonding was also studied. It is found that CTNR can effectively be used in bonding rubber to rubber and rubber to mild steel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work undertakes the preparation and physico-chemical characterisation of iron promoted sulphated zirconia (SZ) with different amounts of iron loading and their application to Friedel-Crafts benzoylation of benzene, toluene and xylene under different experimental conditions, XRD and laser Raman techniques reveal the stabilisation of the tetragonal phase of zirconia and the existence of iron in highly dispersed form as Fe203 on the catalyst surface. The surface acidic properties were determined by ammonia temperature programmed desorption (TPD) and perylene adsorption, The results were supported by the TGA studies after adsorption of pyridine and 2,6-dimethylpyridine (2,6-DMP), Strong Lewis acid sites on the surface, which are evident from TPD and perylene adsorption studies. explain the high catalytic activity of the systems towards benzoylation. The experimental results provide evidence for the truly heterogeneous nature of the reaction. The studies also establish the resistance to deactivation in the metal incorporated sulphated systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors apply the theory of photothermal lens formation and also that of pure optical nonlinearity to account for the phase modulation in a beam as it traverses a nonlinear medium. It is used to simultaneously determine the nonlinear optical refraction and the thermo-optic coefficient. They demonstrate this technique using some metal phthalocyanines dissolved in dimethyl sulfoxide, irradiated by a Q-switched Nd:YAG laser with 10 Hz repetition rate and a pulse width of 8 ns. The mechanism for reverse saturable absorption in these materials is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding energies of two-dimensional clusters (puddles) of¿4He are calculated in the framework of the diffusion Monte Carlo method. The results are well fitted by a mass formula in powers of x=N-1/2, where N is the number of particles. The analysis of the mass formula allows for the extraction of the line tension, which turns out to be 0.121 K/Å. Sizes and density profiles of the puddles are also reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self- and cross-velocity correlation functions and related transport coefficients of molten salts are studied by molecular-dynamics simulation. Six representative systems are considered, i.e., NaCl and KCl alkali halides, CuCl and CuBr noble-metal halides, and SrCl2 and ZnCl2 divalent metal-ion halides. Computer simulation results are compared with experimental self-diffusion coefficients and electrical conductivities. Special attention is paid to dynamic cross correlations and their dependence on the Coulomb interactions as well as on the size and mass differences between anions and cations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the pseudopotential on both the structure and the self-diffusion of liquid rubidium at the melting point has been investigated by means of molecular-dynamics calculations. The model potential considered has been computed from the pseudopotential of Ashcroft, the dielectric function of Geldart and Vosko, and a Born-Mayer term. Four different values for the core radius which enters as input in the pseudopotential have been considered. In this way we have been able to observe and interpret the effect of this contribution on the properties of the liquid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen spillover on carbon-supported precious metal catalysts has been investigated with inelastic neutron scattering (INS) spectroscopy. The aim, which was fully realized, was to identify spillover hydrogen on the carbon support. The inelastic neutron scattering spectra of Pt/C, Ru/C, and PtRu/C fuel cell catalysts dosed with hydrogen were determined in two sets of experiments: with the catalyst in the neutron beam and, using an annular cell, with carbon in the beam and catalyst pellets at the edge of the cell excluded from the beam. The vibrational modes observed in the INS spectra were assigned with reference to the INS of a polycyclic aromatic hydrocarbon, coronene, taken as a molecular model of a graphite layer, and with the aid of computational modeling. Two forms of spillover hydrogen were identified: H at edge sites of a graphite layer (formed after ambient dissociative chemisorption of H-2), and a weakly bound layer of mobile H atoms (formed by surface diffusion of H atoms after dissociative chernisorption of H-2 at 500 K). The INS spectra exhibited characteristic riding modes of H on carbon and on Pt or Ru. In these riding modes H atoms move in phase with vibrations of the carbon and metal lattices. The lattice modes are amplified by neutron scattering from the H atoms attached to lattice atoms. Uptake of hydrogen, and spillover, was greater for the Ru containing catalysts than for the Pt/C catalyst. The INS experiments have thus directly demonstrated H spillover to the carbon support of these metal catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption and subsequent thermal chemistry of the acetyl-protected manganese porphyrin, [SA(C)](4)P-Mn(III)Cl on Ag(100) have been studied by high resolution XPS and temperature-programmed desorption. The deprotection event, leading to formation of the covalently bound thioporphyrin, has been characterized and the conditions necessary for removal of the axial chlorine ligand have been determined, thus establishing a methodology for creating tethered activated species that could serve as catalytic sites for delicate oxidation reactions. Surface-mediated acetyl deprotection occurs at 298 K, at which temperature porphyrin diffusion is limited. At temperatures above similar to 425 K porphyrin desorption, diffusion and deprotection occur and at >470 K the axial chlorine is removed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A relatively simple, selective, precise and accurate high performance liquid chromatography (HPLC) method based on a reaction of phenylisothiocyanate (PITC) with glucosamine (GL) in alkaline media was developed and validated to determine glucosamine hydrochloride permeating through human skin in vitro. It is usually problematic to develop an accurate assay for chemicals traversing skin because the excellent barrier properties of the tissue ensure that only low amounts of the material pass through the membrane and skin components may leach out of the tissue to interfere with the analysis. In addition, in the case of glucosamine hydrochloride, chemical instability adds further complexity to assay development. The assay, utilising the PITC-GL reaction was refined by optimizing the reaction temperature, reaction time and PITC concentration. The reaction produces a phenylthiocarbarnyl-glucosamine (PTC-GL) adduct which was separated on a reverse-phase (RP) column packed with 5 mu m ODS (C-18) Hypersil particles using a diode array detector (DAD) at 245 nm. The mobile phase was methanol-water-glacial acetic acid (10:89.96:0.04 v/v/v, pH 3.5) delivered to the column at 1 ml min(-1) and the column temperature was maintained at 30 degrees C Using a saturated aqueous solution of glucosamine hydrochloride, in vitro permeation studies were performed at 32 +/- 1 degrees C over 48 h using human epidermal membranes prepared by a heat separation method and mounted in Franz-type diffusion cells with a diffusional area 2.15 +/- 0.1 cm(2). The optimum derivatisation reaction conditions for reaction temperature, reaction time and PITC concentration were found to be 80 degrees C, 30 min and 1 % v/v, respectively. PTC-Gal and GL adducts eluted at 8.9 and 9.7 min, respectively. The detector response was found to be linear in the concentration range 0-1000 mu g ml(-1). The assay was robust with intra- and inter-day precisions (described as a percentage of relative standard deviation, %R.S.D.) < 12. Intra- and inter-day accuracy (as a percentage of the relative error, %RE) was <=-5.60 and <=-8.00, respectively. Using this assay, it was found that GL-HCI permeates through human skin with a flux 1.497 +/- 0.42 mu g cm(-2) h(-1), a permeability coefficient of 5.66 +/- 1.6 x 10(-6) cm h(-1) and with a lag time of 10.9 +/- 4.6 h. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The migration of liquids in porous media, such as sand, has been commonly considered at high saturation levels with liquid pathways at pore dimensions. In this letter we reveal a low saturation regime observed in our experiments with droplets of extremely low volatility liquids deposited on sand. In this regime the liquid is mostly found within the grain surface roughness and in the capillary bridges formed at the contacts between the grains. The bridges act as variable-volume reservoirs and the flow is driven by the capillary pressure arising at the wetting front according to the roughness length scales. We propose that this migration (spreading) is the result of interplay between the bridge volume adjustment to this pressure distribution and viscous losses of a creeping flow within the roughness. The net macroscopic result is a special case of non-linear diffusion described by a superfast diffusion equation (SFDE) for saturation with distinctive mathematical character. We obtain solutions to a moving boundary problem defined by SFDE that robustly convey a time power law of spreading as seen in our experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of nucleation and growth and the solid-to-liquid transition of metallic nanoclusters embedded in sodium borate glass were recently studied in situ via small-angle X-ray scattering (SAXS) and wide-an-le X-ray scattering (WAXS). SAXS results indicate that, under isothermal annealing conditions, the formation and growth of Bi or Ag nanoclusters embedded in sodium borate glass occurs through two successive stages after a short incubation period. The first stage is characterized by the nucleation and growth of spherical metal clusters promoted by the diffusion of Bi or Ag atoms through the initially supersaturated glass phase. The second stage is named the coarsening stage and occurs when the (Bi- or Ag-) doping level of the vitreous matrix is close to the equilibrium value. The experimental results demonstrated that, at advanced stages of the growth process, the time dependence of the average radius and density number of the clusters is in agreement with the classical Lifshitz-Slyozov-Waoner (LSW) theory. However, the radius distribution function is better described by a lognormal function than by the function derived from the theoretical LSW model. From the results of SAXS measurements at different temperatures, the activation energies for the diffusion of Ag and Bi through sodium borate glass were determined. In addition, via combination of the results of simultaneous WAXS and SAXS measurements at different temperatures, the crystallographic structure and the dependence of melting temperature T(m) on crystal radius R of Bi nanocrystals were established. The experimental results indicate that T(m) is a linear and decreasing function of nanocrystal reciprocal radius 1/R, in agreement with the Couchman and Jesser theoretical model. Finally, a weak contraction in the lattice parameters of Bi nanocrystals with respect to bulk crystals was established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We here report the synthesis, characterization and catalytic performance of new supported Ru(III) and Ru(0) catalysts. In contrast to most supported catalysts, these new developed catalysts for oxidation and hydrogenation reactions were prepared using nearly the same synthetic strategy, and are easily recovered by magnetic separation from liquid phase reactions. The catalysts were found to be active in both forms, Ru(III) and Ru(0), for selective oxidation of alcohols and hydrogenation of olefins, respectively. The catalysts operate under mild conditions to activate molecular oxygen or molecular hydrogen to perform clean conversion of selected substrates. Aryl and alkyl alcohols were converted to aldehydes under mild conditions, with negligible metal leaching. If the metal is properly reduced, Ru(0) nanoparticles immobilized on the magnetic support surface are obtained, and the catalyst becomes active for hydrogenation reactions. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transport coefficients have been measured as a function of the concentration of sulfur dioxide, SO(2), dissolved in 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)-imide, [BMMI][Tf(2)N], as well as in its lithium salt solution, Li[Tf(2)N]. The SO(2) reduces viscosity and density and increases conductivity and diffusion coefficients in both the neat [BMMI] [Tf(2)N] and the [BMMI][Tf(2)N]-Li[Tf(2)N] solution. The conductivity enhancement is not assigned to a simple viscosity effect; the weakening of ionic interactions upon SO(2) addition also plays a role. Microscopic details of the SO(2) effect were unraveled using Raman spectroscopy and molecular dynamics (MD) simulations. The Raman spectra suggest that the Li(+)-[Tf(2)N] interaction is barely affected by SO(2), and the SO(2)-[Tf(2)N] interaction is weaker than previously observed in an investigation of an ionic liquid containing the bromide anion. Transport coefficients calculated by MD simulations show the same trend as the experimental data with respect to SO(2) content. The MD simulations provide structural information on SO(2) molecules around [Tf(2)N], in particular the interaction of the sulfur atom of SO(2) with oxygen and fluorine atoms of the anion. The SO(2)-[BMMI] interaction is also important because the [BMMI] cations with above-average mobility have a larger number of nearest-neighbor SO(2) molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly stable and crystalline V(2)O(5) nanoparticles with an average diameter of 15 nm have been easily prepared by thermal treatment of a bariandite-like vanadium oxide, V(10)O(24)center dot 9H(2)O. Their characterization was carried out by powder X-ray diffractometry (XRD). Fourier transform infrared (FT-IR) and Raman spectroscopies, and transmission electron microscopy (TEM). The fibrous and nanostructured film obtained by electrophoretic deposition of the V(2)O(5) nanoparticles showed good electroactivity when submitted to cyclic voltammetry in an ionic liquid-based electrolyte. The use of this film for the preparation of a nanostructured electrode led to an improvement of about 50% in discharge capacity values when compared with similar electrodes obtained by casting of a V(2)O(5) xerogel. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The viscosity of ionic liquids based on quaternary ammonium cations is reduced when one of the alkyl chains is replaced by an alkoxy chain (Zhou et al. Chem. Eur. J. 2005, 11, 752.). A microscopic picture of the role played by the ether function in decreasing the viscosity of quaternary ammonium ionic liquids is provided here by molecular dynamics (MD) simulations. A model for the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM(2)E TFSI, is compared to the tetraalky-lammonium counterpart. The alkoxy derivative has lower viscosity, higher ionic diffusion coefficients, and higher conductivity than the tetraalkyl system at the same density and temperature. A clear signature of the ether function on the liquid structure is observed in cation-cation correlations, but not in anion-anion or anion-cation correlations. In both the alkyl and the alkoxy ionic liquids, there is aggregation of long chains of neighboring cations within micelle-like structures. The MD simulations indicate that the less effective assembly between the more flexible alkoxy chains, in comparison to alkyl chains, is the structural reason for higher ionic mobility in MOENM(2)E TFSI.