974 resultados para isotope geology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep Sea Drilling Project (DSDP) Site 215 provides an expanded section across the Paleocene/Eocene boundary, the most complete mid-latitude sequence from a Southern Hemisphere location in the Indo-Pacific area. The events of this transition occurred during a span of about 1.2 m.y. Oxygen isotope values derived from benthic foraminiferal calcite decrease by about 1.0 per mil, a decrease most likely related to warming of deep ocean waters. Turnovers of benthic foraminifera accompany d18O changes and culminate in the predominant extinction event at the end of the Paleocene Epoch. Carbon isotope ratios also shift dramatically toward lighter values near the end of the Paleocene, beginning about 0.45 m.y. after oxygen isotope values start to change. The intensity of Southern Hemisphere atmospheric circulation as recorded by grain sizes of eolian particles shows a large and rapid reduction beginning another 0.45 m.y. later. A significant reduction of zonal wind strength at the Paleocene/Eocene boundary, until now observed only at Northern Hemisphere locations, appears to have been a global phenomenon related to decreased latitudinal thermal gradients occasioned by more effective poleward heat transport via the deep ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petrographic and stable-isotope (d13C, d18O) patterns of carbonates from the Logatchev Hydrothermal Field (LHF), the Gakkel Ridge (GR), and a Late Devonian outcrop from the Frankenwald (Germany) were compared in an attempt to understand the genesis of carbonate minerals in marine volcanic rocks. Specifically, were the carbonate samples from modern sea floor settings and the Devonian analog of hydrothermal origin, low-temperature abiogenic origin (as inferred for aragonite in serpentinites from elsewhere on the Mid-Atlantic Ridge), or biogenic origin? Aragonite is the most abundant carbonate mineral in serpentinites from the two modern spreading ridges and occurs within massive sulfides of the LHF. The precipitation and preservation of aragonite suggests high Mg2+ and sulfate concentrations in fluids. Values of d18OPDB as high as +5.3 per mill for serpentinite-hosted aragonite and as high as +4.2 per mill for sulfide-hosted aragonite are consistent with precipitation from cold seawater. Most of the corresponding d13C values indicate a marine carbon source, whereas d13C values for sulfide-hosted aragonite as high as +3.6 per mill may reflect residual carbon dioxide in the zone of methanogenesis. Calcite veins from the LHF, by contrast, have low d18OPDB (-20.0 per mill to -16.1 per mill) and d13C values (-5.8 per mill to -4.5 per mill), indicative of precipitation from hydrothermal solutions (~129°-186°C) dominated by magmatic CO2. Calcite formation was probably favored by fluid rock interactions at elevated temperatures, which tend to remove solutes that inhibit calcite precipitation in seawater (Mg2+ and sulfate). Devonian Frankenwald calcites show low d18O values, reflecting diagenetic and metamorphic overprinting. Values of d13C around 0 per mill for basalt-hosted calcite indicate seawater-derived inorganic carbon, whereas d13C values for serpentinite-hosted calcite agree with mantle-derived CO2 (for values as low as -6 per mill) with a contribution of amagmatic carbon (for values as low as -8.6 per mill), presumably methane. Secondary mineral phases from the LHF for which a biogenic origin appears feasible include dolomite dumbbells, clotted carbonate, and a network of iron- and silica-rich filaments.

Relevância:

30.00% 30.00%

Publicador: