940 resultados para isolation
Resumo:
Chicken pancreatic polypeptide is the prototype of the neuropeptide Y (NPY)/PP superfamily of regulatory peptides. This polypeptide was appended the descriptive term avian, despite the presence of some 8600 extant species of bird. Additional primary structures from other avian species, including turkey, goose and ostrich, would suggest that the primary structure of this polypeptide has been highly-conserved during avian evolution. Avian pancreatic polypeptides structurally-characterised to date have distinctive primary structural features unique to this vertebrate group including an N-terminal glycyl residue and a histidyl residue at position 34. The crow family, Corvidae, is representative of the order Passeriformes, generally regarded as the most evolutionarily recent and diverse avian taxon. Pancreatic polypeptide has been isolated from pancreatic tissues from five representative Eurasian species (the magpie, Pica pica; the jay, Garrulus glandarius; the hooded crow, Corvus corone; the rook, Corvus frugilegus; the jackdaw, Corvus monedula) and subjected to structural analyses. Mass spectroscopy estimated the molecular mass of each peptide as 4166 +/- 2 Da. The entire primary structures of 36 amino acid residue peptides were established in single gas-phase sequencing runs. The primary structures of pancreatic polypeptides from all species investigated were identical: APAQPAYPGDDAPVEDLLR-FYNDLQQYLNVVTRPRY. The peptides were deemed to be amidated due to their full molar cross-reactivity with the amide-requiring PP antiserum employed. The molecular mass (4165.6 Da), calculated from the sequences, was in close agreement with mass spectroscopy estimates. The presence of an N-terminal alanyl residue and a prolyl residue at position 34 differentiates crow PP from counterparts in other avian species. These residues are analogous to those found in most mammalian analogues. These data suggest that the term avian, appended to the chicken peptide, is no longer tenable due to the presence of an Ala1, Pro34 peptide in five species from the largest avian order. These data might also suggest that, in keeping with the known structure/activity requirements of this peptide family, crow PP should interact identically to mammalian analogues on mammalian receptors.
Resumo:
Using an antiserum raised to the C-terminal region of neuropeptide Y (NPY) which does not cross-react with pancreatic polypeptide (PP), immunoreactivity has been detected in two different endocrine tumours of the human pancreas in concentrations permitting isolation and structural analysis. In a clinically-typical gastrinoma, resected from the head of pancreas, the concentration of NPY immunoreactivity was 3.4 nmol/g. Reverse phase HPLC analysis of extracts of this tumour resolved a single immunoreactive peptide coeluting with synthetic human NPY. The molecular mass of the isolated peptide, determined by mass spectroscopy, was 4270 Da, which was in close agreement with that derived from the deduced primary structure of human tumour NPY (4271.7 Da), obtained by gas-phase sequencing. A somatostatinoma, resected from the region of the ampulla of Vater, contained 3.8 nmol/g of NPY immunoreactivity and isolation of this immunoreactive peptide followed by structural analyses, indicated a molecular structure consistent with NPY 3-36. These data suggest that NPY immunoreactivity detected in human pancreatic endocrine tumours is molecularly heterogenous, a finding which may be of relevance in the symptomatology of such tumours as attenuation of the N-terminus of this peptide generates receptor selectivity.
Resumo:
We report the isolation in cell cultures of two novel bocavirus species in pigs from farms in Northern Ireland with clinical postweaning multisystemic wasting syndrome (PMWS). We have designated the isolates as porcine bocavirus-3 (PBoV3) and porcine bocavirus-4 (PBoV4). To date 5082 and 4125 bps of PBoV3 and PBoV4 have been sequenced, respectively. PBoV3 and PBoV4 show nucleotide homology to other known bocaviruses in swine and other organisms. Open reading frame (ORF) analysis has shown that these viruses have a third small ORF, equivalent to the NP1 ORF that distinguishes the bocaviruses from other parvoviruses.
Resumo:
Isolation basin records from the Seymour-Belize Inlet Complex, a remote area of central mainland British Columbia, Canada are used to constrain post-glacial sea-level changes and provide a preliminary basis for testing geophysical model predictions of relative sea-level (RSL) change. Sedimentological and diatom data from three low-lying (<4 m elevation) basins record falling RSLs in late-glacial times and isolation from the sea by ~11,800–11,200 14C BP. A subsequent RSL rise during the early Holocene (~8000 14C BP) breached the 2.13 m sill of the lowest basin (Woods Lake), but the two more elevated basins (sill elevations of ~3.6 m) remained isolated. At ~2400 14C BP, RSL stood at 1.49 ± 0.34 m above present MTL. Falling RSLs in the late Holocene led to the final emergence of the Woods Lake basin by 1604 ± 36 14C BP. Model predictions generated using the ICE-5G model partnered with a small number of different Earth viscosity models generally show poor agreement with the observational data, indicating that the ice model and/or Earth models considered can be improved upon. The best data-model fits were achieved with relatively low values of upper mantle viscosity (5 × 1019 Pa s), which is consistent with previous modelling results from the region. The RSL data align more closely with observational records from the southeast of the region (eastern Vancouver Island, central Strait of Georgia), than the immediate north (Bella Bella–Bella Coola and Prince Rupert-Kitimat) and areas to the north-west (Queen Charlotte Sound, Hecate Strait), underlining the complexity of the regional response to glacio-isostatic recovery.
Resumo:
<p>The bowfin is an extant representative of an ancient group of ray-finned fish with evolutionary connections to modern teleosts. A peptide with substance P-like immunoreactivity was isolated from an extract of bowfin stomach and its primary structure was established as Ser-Lys-Ser-His-Gln-Phe-Tyr-Gly-Leu-Met-NH2. This amino acid sequence resembles mammalian substance P only in the COOH-terminal region of the peptide. A second tachykinin with neurokinin A-like immunoreactivity isolated from the extract comprises 23 amino acid residues and shows limited structural similarity to mammalian neuropeptide-gamma. A randomly distributed population of cells in the gastric glands of the bowfin were immunostained with an antiserum raised against substance P, but no immunopositive structures were identified in the surface epithelium, lamina propria, or the nerve plexuses of the submucosa. Bolus injections of synthetic bowfin substance P (0.1-10 nmol/kg) into the bulbus arteriosus of unanesthetized bowfin resulted in a significant and dose-dependent rise in vascular resistance and arterial blood pressure (P < 0.01) and a fall in cardiac output (P < 0.05) without change in heart rate. After 5-10 min, arterial pressure and vascular resistance returned to preinjection levels, but cardiac output significantly (P < 0.05) increased over baseline values. The response to the peptide was unaffected by pretreatment of the animals with phentolamine. The study has shown that the stomach of the bowfin synthesizes tachykinins with novel structural features that display cardiovascular activity in this species.</p>
Resumo:
A specimen of emollient cream, which was observed to be contaminated peripherally with a filamentous fungus was examined for the presence of fungi and the resulting fungal colonies were examined phenotypically and genotypically. Subsequent DNA extraction and PCR amplification of the large internal transcribed spacer region [ITS1-5.8S-ITS2] yielded an amplicon of 512 bp. Sequence analysis identified this as Alternaria alternata at the 100% homology level with all 512/512 bases called. This organism has been previously reported as a cause of opportunistic infections involving skin and immunocompromised patients. This is the first report of an emollient cream as a source of this organism. It highlights the need for proper management of such preparations in order to minimize the potential spread of fungi to susceptible patient populations.
Resumo:
Transplantation of hepatocytes or hepatocyte-like cells of extrahepatic origin is a promising strategy for treatment of acute and chronic liver failure. We examined possible utility of hepatocyte-like cells induced from bone marrow cells for such a purpose. Clonal cell lines were established from the bone marrow of two different rat strains. One of these cell lines, rBM25/S3 cells, grew rapidly (doubling time, approximately 24 hours) without any appreciable changes in cell properties for at least 300 population doubling levels over a period of 300 days, keeping normal diploid karyotype. The cells expressed CD29, CD44, CD49b, CD90, vimentin, and fibronectin but not CD45, indicating that they are of mesenchymal cell origin. When plated on Matrigel with hepatocyte growth factor and fibroblast growth factor-4, the cells efficiently differentiated into hepatocyte-like cells that expressed albumin, cytochrome P450 (CYP) 1A1, CYP1A2, glucose 6-phosphatase, tryptophane-2,3-dioxygenase, tyrosine aminotransferase, hepatocyte nuclear factor (HNF)1 alpha, and HNF4alpha. Intrasplenic transplantation of the differentiated cells prevented fatal liver failure in 90%-hepatectomized rats. In conclusion, a clonal stem cell line derived from adult rat bone marrow could differentiate into hepatocyte-like cells, and transplantation of the differentiated cells could prevent fatal liver failure in 90%-hepatectomized rats. The present results indicate a promising strategy for treating human fatal liver diseases.
Resumo:
Skin is a representative self-renewing tissue containing stem cells. Although many attempts have been made to define and isolate skin-derived stem cells, establishment of a simple and reliable isolation procedure remains a goal to be achieved. Here, we report the isolation of cells having stem cell properties from mouse embryonic skin using a simple selection method based on an assumption that stem cells may grow in an anchorage-independent manner. We inoculated single cell suspensions prepared from mouse embryonic dermis into a temperature-sensitive gel and propagated the resulting colonies in a monolayer culture. The cells named dermis-derived epithelial progenitor-1 (DEEP) showed epithelial morphology and grew rapidly to a more than 200 population doubling level over a period of 250 days. When the cells were kept confluent, they spontaneously formed spheroids and continuously grew even in spheroids. Immunostaining revealed that all of the clones were positive for the expression of cytokeratin-8, -18, -19, and E-cadherin and negative for the expression of cytokeratin-1, -5, -6, -14, -20, vimentin, nestin, a ckit. Furthermore, they expressed epithelial stem cell markers such as p63, integrin beta1, and S100A6. On exposure to TGFbeta in culture, some of DEEP-1 cells expressed alpha-smooth muscle actin. When the cells were transplanted into various organs of adult SCID mice, a part of the inoculated cell population acquired neural, hepatic, and renal cell properties. These results indicate that the cells we isolated were of epithelial stem cell origin and that our new approach is useful for isolation of multipotent stem cells from skin tissues.
Resumo:
<p>s-Triazine herbicides are used extensively in South America in agriculture and forestry. In this study, a bacterium designated as strain MHP41, capable of degrading simazine and atrazine, was isolated from agricultural soil in the Quillota valley, central Chile. Strain MHP41 is able to grow in minimal medium, using simazine as the sole nitrogen source. In this medium, the bacterium exhibited a growth rate of mu = 0.10 h(-1), yielding a high biomass of 4.2 x 10(8) CFU mL(-1). Resting cells of strain MHP41 degrade more than 80% of simazine within 60 min. The atzA, atzB, atzC, atzD, atzE and atzF genes encoding the enzymes of the simazine upper and lower pathways were detected in strain MHP41. The motile Gram-negative bacterium was identified as a Pseudomonas sp., based on the Biolog microplate system and comparative sequence analyses of the 16S rRNA gene. Amplified ribosomal DNA restriction analysis allowed the differentiation of strain MHP41 from Pseudomonas sp. ADP. The comparative 16S rRNA gene sequence analyses suggested that strain MHP41 is closely related to Pseudomonas nitroreducens and Pseudomonas multiresinovorans. This is the first s-triazine-degrading bacterium isolated in South America. Strain MHP41 is a potential biocatalyst for the remediation of s-triazine-contaminated environments.</p>
Resumo:
The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC), and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure.
Resumo:
In the present study, we examined the possible utility of a three-dimensional culture system using a thermo-reversible gelation polymer to isolate and expand neural stem cells (NSCs). The polymer is a synthetic biologically inert polymer and gelates at temperatures higher than the gel-sol transition point ( approximately 20 degrees C). When fetal mouse brain cells were inoculated into the gel, spherical colonies were formed ( approximately 1% in primary culture and approximately 9% in passage cultures). The spheroid-forming cells were positive for expression of the NSC markers nestin and Musashi. Under conditions facilitating spontaneous neural differentiation, the spheroid-forming cells expressed genes characteristic to astrocytes, oligodendrocytes, and neurons. The cells could be successively propagated at least to 80 poly-D-lysines over a period of 20 weeks in the gel culture with a growth rate higher than that observed in suspension culture. The spheroids formed by fetal mouse brain cells in the gel were shown to be of clonal origin. These results indicate that the spheroid culture system is a convenient and powerful tool for isolation and clonal expansion of NSCs in vitro.
Resumo:
Campylobacter jejuni (C. jejuni) is one of the leading causes of bacterial food-borne disease worldwide. The presence of Campylobacter in chicken feces poses a high risk for contamination of chicken meat and for Campylobacter infections in human. Detection of this bacterium in chicken fecal specimens before slaughter is therefore vital to prevent disease transmission. By combining two techniques – immunomagnetic separation (IMS) and polymerase chain reaction (PCR), this study developed a reliable and specific method for rapid detection of C. jejuni in chicken fecal samples. The specificity of the assay was assured by two selection steps: 1) Dynabeads®M-270 Amine microbeads (2.8 µm in diameter) coated with C. jejuni monoclonal antibodies were used as the primary selection to isolate bacteria from fecal samples. 2) A PCR assay amplifying the Hippuricase gene was performed as the specific selection to accurately confirm the presence of C. jejuni. Without pre-enrichment, this method was able to detect approximately 10 CFU of C. jejuni in 1 µl of spiked feces within 3 h.
Resumo:
Molecularly Imprinted Polymers (MIPs) targeting shikonin, a potent antioxidant and wound healing agent, have been prepared using methacrylic acid (MAA) and 2-diethylaminoethyl methacrylate (DEAEMA) as functional monomers. An investigation of solution association between shikonin and both acidic and basic functional monomers by UV-Vis titrations, suggested stronger affinity towards the basic functionality. Strong inhibition of the co-polymerisation reaction of such basic monomers was observed, but was overcome by reduction of the amount of template used during polymer synthesis. Polymer morphology was severely impacted by the template’s radical scavenging behaviour as demonstrated by solid state NMR spectroscopy measurements. HPLC evaluation of the final materials in polar conditions revealed limited imprinting effects and selectivity, with the MAA polymers exhibiting marginally better performance. During application of the polymers as MI-SPE sorbents in non-polar solvents it was found that the DEAEMA based polymer was more selective towards shikonin compared to the MAA counterpart, while shikonin recoveries of up to 72% were achieved from hexane solutions of a commercial sample of shikonin, hexane extract of Alkanna tinctoria roots and a commercial pharmaceutical ointment.