936 resultados para interlateral asymmetry
Resumo:
This paper examines the asymmetric behavior of conditional mean and variance. Short-horizon mean-reversion behavior in mean is modeled with an asymmetric nonlinear autoregressive model, and the variance is modeled with an Exponential GARCH in Mean model. The results of the empirical investigation of the Nordic stock markets indicates that negative returns revert faster to positive returns when positive returns generally persist longer. Asymmetry in both mean and variance can be seen on all included markets and are fairly similar. Volatility rises following negative returns more than following positive returns which is an indication of overreactions. Negative returns lead to increased variance and positive returns leads even to decreased variance.
Resumo:
Utilizing concurrent 5-minute returns, the intraday dynamics and inter-market dependencies in international equity markets were investigated. A strong intraday cyclical autocorrelation structure in the volatility process was observed to be caused by the diurnal pattern. A major rise in contemporaneous cross correlation among European stock markets was also noticed to follow the opening of the New York Stock Exchange. Furthermore, the results indicated that the returns for UK and Germany responded to each other’s innovations, both in terms of the first and second moment dependencies. In contrast to earlier research, the US stock market did not cause significant volatility spillover to the European markets.
Resumo:
802.11 WLANs are characterized by high bit error rate and frequent changes in network topology. The key feature that distinguishes WLANs from wired networks is the multi-rate transmission capability, which helps to accommodate a wide range of channel conditions. This has a significant impact on higher layers such as routing and transport levels. While many WLAN products provide rate control at the hardware level to adapt to the channel conditions, some chipsets like Atheros do not have support for automatic rate control. We first present a design and implementation of an FER-based automatic rate control state machine, which utilizes the statistics available at the device driver to find the optimal rate. The results show that the proposed rate switching mechanism adapts quite fast to the channel conditions. The hop count metric used by current routing protocols has proven itself for single rate networks. But it fails to take into account other important factors in a multi-rate network environment. We propose transmission time as a better path quality metric to guide routing decisions. It incorporates the effects of contention for the channel, the air time to send the data and the asymmetry of links. In this paper, we present a new design for a multi-rate mechanism as well as a new routing metric that is responsive to the rate. We address the issues involved in using transmission time as a metric and presents a comparison of the performance of different metrics for dynamic routing.
Resumo:
1S,5R,7R)-(-)-10, 10-Dimethyl-3-ethyl-4-oxa--atricyclo[5.2.1.0(1,5)]dec-2-ene 2 was prepared in 95% yield from (1S)-1-amino-2-exo-hydroxyapocamphane 1. The chiral oxazoline could be alkylated (Lhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=31175&stage=core#tDA/THF/-78 degrees C/RX, RX = ethyl, n-propyl, n-butyl iodides or benzyl bromide) to 3 in 95% yield and > 95% diastereoselectivity, and the products hydrolysed to (R)-2-methylalkanoic acids 4 (43-47% yield, 93-98% e.e.). (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
We report the first electron paramagnetic resonance studies of single crystals and powders of Pr0.6Ca0.4MnO3 in the 300-4.2 K range, covering the charge-ordering transition (Tco) at ~240 K and antiferromagnetic transition (TN) at ~170 K. The asymmetry parameter for the Dysonian single-crystal spectra shows an anomalous increase at Tco. Below Tco the g-value increases continuously, suggesting a gradual strengthening of the orbital ordering. The linewidth undergoes a sudden increase at Tco and continues to increase down to TN. The intensity increases as the temperature is decreased until Tco is reached, due to the renormalization of the magnetic susceptibility arising from the build-up of ferromagnetic correlations.
Resumo:
In this work, using self-consistent tight-binding calculations. for the first time, we show that a direct to indirect band gap transition is possible in an armchair graphene nanoribbon by the application of an external bias along the width of the ribbon, opening up the possibility of new device applications. With the help of the Dirac equation, we qualitatively explain this band gap transition using the asymmetry in the spatial distribution of the perturbation potential produced inside the nanoribbon by the external bias. This is followed by the verification of the band gap trends with a numerical technique using Magnus expansion of matrix exponentials. Finally, we show that the carrier effective masses possess tunable sharp characters in the vicinity of the band gap transition points.
Resumo:
A large volume of literature suggests that information asymmetry resulting from the spatial separation between investors and investments have a significant impact on the composition of investors’ domestic and international portfolios. I show that institutional factors affecting trading in tangible goods help explain a substantial portion of investors’ spatial bias. More importantly, I demonstrate that an information flow medium with breadth and richness directly linked to the bilateral commitment of resources between countries, that I measure by their trading intensity in tangible goods, is consistent with the prevailing country allocation in investors’ international portfolios.
Resumo:
Both enantiomers of 1-phenylethane-1,2-diol were synthesized with good to excellent enantioselectivities via selective reduction of the phenylglyoxalates derived from bile acids, followed by reductive cleavage. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Some empirical research has argued that part of the reason for the observed "home bias" is that investors are able to indirectly achieve internationally diversified portfolios via domestically listed multinational firms. Another branch of this research attributes the "home bias" and country allocations to more deeply rooted informational causes. Using a four-year annual panel of Finnish international portfolios and Foreign Direct Investments in twenty-five countries, I provide evidence consistent with an information asymmetry explanation
Resumo:
A theoretical conformational analysis of fenamates, which are N-arylated derivatives of anthranilic acid or 2-aminonicotinic acid with different substituents on the aryl (phenyl) group, is reported. The analysis of these analgesics, which are believed to act through the inhibition of prostaglandin biosynthesis, was carried out using semi-empirical potential functions. The results and available crystallographic observations have been critically examined in terms of their relevance to drug action. Crystallographic studies of these drugs and their complexes have revealed that the fenamate molecules share a striking invariant feature, namely, the sixmembered ring bearing the carboxyl group is coplanar with the carboxyl group and the bridging imino group,the coplanarity being stabilized by resonance interactions and an internal hydrogen bond between the imino and carboxyl groups. The results of the theoretical analysis provide a conformational rationale for the observed invariant coplanarity. The second sixmembered ring, which provides hydrophobicity in a substantial part of the molecule, has limited conformational flexibility in meclofenamic, mefenamic and flufenamic acids. Comparison of the conformational energy maps of these acids shows that they could all assume the same conformation when bound to the relevant enzyme. The present study provides a structural explanation for the difference in the activity of niflumic acid, which can assume a conformation in which the whole molecule is nearly planar. The main role of the carboxyl group appears to be to provide a site for intermolecular interactions in addition to helping in stabilizing the invariant coplanar feature and providing hydrophilicity at one end of the molecule. The fenamates thus provide a good example of conformation- dependent molecular asymmetry.
Resumo:
A new case of the uncommon cis-trans enantiomerism is presented. The titled anhydride adducts were prepared in good yields by the known reaction of three 6-arylfulvenes with maleic anhydride (aryl = phenyl, p-tolyl and p-anisyl). The exo adducts were converted to the corresponding imides by reaction with (1S)-1-(naphth-1-yl)ethylamine in similar to 80% yields, and the resulting diastereomeric imides separated by silica gel column chromatography. They were hydrolysed and recyclised to the chiral anhydrides, in `one-pot' with 10% NaOH-EtOH, followed by treatment with 2 M HCl, in similar to 40% yields. The titled anhydrides were thus obtained in homochiral form, in enantiomeric purities (generally) of similar to 90% as indicated by chiral HPLC. The chiral anhydrides were also converted to the corresponding imides (presumably stereospecifically), by treatment with ammonia solution in excellent yields. The crystal structure of one of the above diastereomeric imides (derived from 6-phenylfulvene) was determined, and based on the known (S)-configuration of the naphthylethylamine moiety, the `configurations' of the original anhydride adducts were assigned. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Background: One of the major challenges in understanding enzyme catalysis is to identify the different conformations and their populations at detailed molecular level in response to ligand binding/environment. A detail description of the ligand induced conformational changes provides meaningful insights into the mechanism of action of enzymes and thus its function. Results: In this study, we have explored the ligand induced conformational changes in H. pylori LuxS and the associated mechanistic features. LuxS, a dimeric protein, produces the precursor (4,5-dihydroxy-2,3-pentanedione) for autoinducer-2 production which is a signalling molecule for bacterial quorum sensing. We have performed molecular dynamics simulations on H. pylori LuxS in its various ligand bound forms and analyzed the simulation trajectories using various techniques including the structure network analysis, free energy evaluation and water dynamics at the active site. The results bring out the mechanistic details such as co operativity and asymmetry between the two subunits, subtle changes in the conformation as a response to the binding of active and inactive forms of ligands and the population distribution of different conformations in equilibrium. These investigations have enabled us to probe the free energy landscape and identify the corresponding conformations in terms of network parameters. In addition, we have also elucidated the variations in the dynamics of water co-ordination to the Zn2+ ion in LuxS and its relation to the rigidity at the active sites. Conclusions: In this article, we provide details of a novel method for the identification of conformational changes in the different ligand bound states of the protein, evaluation of ligand-induced free energy changes and the biological relevance of our results in the context of LuxS structure-function. The methodology outlined here is highly generalized to illuminate the linkage between structure and function in any protein of known structure.
Resumo:
Enantiospecific syntheses of diquinane and linear triquinanes were accomplished, starting from the readily available alpha-campholenaldehyde employing a Nazarov reaction as the key step. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Modern elementary particle physics is based on quantum field theories. Currently, our understanding is that, on the one hand, the smallest structures of matter and, on the other hand, the composition of the universe are based on quantum field theories which present the observable phenomena by describing particles as vibrations of the fields. The Standard Model of particle physics is a quantum field theory describing the electromagnetic, weak, and strong interactions in terms of a gauge field theory. However, it is believed that the Standard Model describes physics properly only up to a certain energy scale. This scale cannot be much larger than the so-called electroweak scale, i.e., the masses of the gauge fields W^+- and Z^0. Beyond this scale, the Standard Model has to be modified. In this dissertation, supersymmetric theories are used to tackle the problems of the Standard Model. For example, the quadratic divergences, which plague the Higgs boson mass in the Standard model, cancel in supersymmetric theories. Experimental facts concerning the neutrino sector indicate that the lepton number is violated in Nature. On the other hand, the lepton number violating Majorana neutrino masses can induce sneutrino-antisneutrino oscillations in any supersymmetric model. In this dissertation, I present some viable signals for detecting the sneutrino-antisneutrino oscillation at colliders. At the e-gamma collider (at the International Linear Collider), the numbers of the electron-sneutrino-antisneutrino oscillation signal events are quite high, and the backgrounds are quite small. A similar study for the LHC shows that, even though there are several backrounds, the sneutrino-antisneutrino oscillations can be detected. A useful asymmetry observable is introduced and studied. Usually, the oscillation probability formula where the sneutrinos are produced at rest is used. However, here, we study a general oscillation probability. The Lorentz factor and the distance at which the measurement is made inside the detector can have effects, especially when the sneutrino decay width is very small. These effects are demonstrated for a certain scenario at the LHC.
Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle
Resumo:
The aims were to determine whether measures of acceleration of the legs and back of dairy cows while they walk could help detect changes in gait or locomotion associated with lameness and differences in the walking surface. In 2 experiments, 12 or 24 multiparous dairy cows were fitted with five 3-dimensional accelerometers, 1 attached to each leg and 1 to the back, and acceleration data were collected while cows walked in a straight line on concrete (experiment 1) or on both concrete and rubber (experiment 2). Cows were video-recorded while walking to assess overall gait, asymmetry of the steps, and walking speed. In experiment 1, cows were selected to maximize the range of gait scores, whereas no clinically lame cows were enrolled in experiment 2. For each accelerometer location, overall acceleration was calculated as the magnitude of the 3-dimensional acceleration vector and the variance of overall acceleration, as well as the asymmetry of variance of acceleration within the front and rear pair of legs. In experiment 1, the asymmetry of variance of acceleration in the front and rear legs was positively correlated with overall gait and the visually assessed asymmetry of the steps (r ≥0.6). Walking speed was negatively correlated with the asymmetry of variance of the rear legs (r=−0.8) and positively correlated with the acceleration and the variance of acceleration of each leg and back (r ≥0.7). In experiment 2, cows had lower gait scores [2.3 vs. 2.6; standard error of the difference (SED)=0.1, measured on a 5-point scale] and lower scores for asymmetry of the steps (18.0 vs. 23.1; SED=2.2, measured on a continuous 100-unit scale) when they walked on rubber compared with concrete, and their walking speed increased (1.28 vs. 1.22m/s; SED=0.02). The acceleration of the front (1.67 vs. 1.72g; SED=0.02) and rear (1.62 vs. 1.67g; SED=0.02) legs and the variance of acceleration of the rear legs (0.88 vs. 0.94g; SED=0.03) were lower when cows walked on rubber compared with concrete. Despite the improvements in gait score that occurred when cows walked on rubber, the asymmetry of variance of acceleration of the front leg was higher (15.2 vs. 10.4%; SED=2.0). The difference in walking speed between concrete and rubber correlated with the difference in the mean acceleration and the difference in the variance of acceleration of the legs and back (r ≥0.6). Three-dimensional accelerometers seem to be a promising tool for lameness detection on farm and to study walking surfaces, especially when attached to a leg.