980 resultados para industrial classification
Resumo:
Yhteenveto: Kemikaalien teollisesta käsittelystä vesieliöille aiheutuvien riskien arviointi mallin avulla.
Resumo:
This master thesis studies how trade liberalization affects the firm-level productivity and industrial evolution. To do so, I built a dynamic model that considers firm-level productivity as endogenous to investigate the influence of trade on firm’s productivity and the market structure. In the framework, heterogeneous firms in the same industry operate differently in equilibrium. Specifically, firms are ex ante identical but heterogeneity arises as an equilibrium outcome. Under the setting of monopolistic competition, this type of model yields an industry that is represented not by a steady-state outcome, but by an evolution that rely on the decisions made by individual firms. I prove that trade liberalization has a general positive impact on technological adoption rates and hence increases the firm-level productivity. Besides, this endogenous technology adoption model also captures the stylized facts: exporting firms are larger and more productive than their non-exporting counterparts in the same sector. I assume that the number of firms is endogenous, since, according to the empirical literature, the industrial evolution shows considerably different patterns across countries; some industries experience large scale of firms’ exit in the period of contracting market shares, while some industries display relative stable number of firms or gradually increase quantities. The special word “shakeout” is used to describe the dramatic decrease in the number of firms. In order to explain the causes of shakeout, I construct a model where forward-looking firms decide to enter and exit the market on the basis of their state of technology. In equilibrium, firms choose different dates to adopt innovation which generate a gradual diffusion process. It is exactly this gradual diffusion process that generates the rapid, large-scale exit phenomenon. Specifically, it demonstrates that there is a positive feedback between firm’s exit and adoption, the reduction in the number of firms increases the incentives for remaining firms to adopt innovation. Therefore, in the setting of complete information, this model not only generates a shakeout but also captures the stability of an industry. However, the solely national view of industrial evolution neglects the importance of international trade in determining the shape of market structure. In particular, I show that the higher trade barriers lead to more fragile markets, encouraging the over-entry in the initial stage of industry life cycle and raising the probability of a shakeout. Therefore, more liberalized trade generates more stable market structure from both national and international viewpoints. The main references are Ederington and McCalman(2008,2009).
Resumo:
Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.
Resumo:
Background: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multidomain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. Methodology: Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. Conclusions: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multidomain architecture.
Resumo:
In the study, the potential allowable cut in the district of Pohjois-Savo - based on the non-industrial private forest landowners' (NIPF) choices of timber management strategies - was clarified. Alternative timber management strategies were generated, and the choices and factors affecting the choices of timber management strategies by NIPF landowners were studied. The choices of timber management strategies were solved by maximizing the utility functions of the NIPF landowners. The parameters of the utility functions were estimated using the Analytic Hierarchy Process (AHP). The level of the potential allowable cut was compared to the cutting budgets based on the 7th and 8th National Forest Inventories (NFI7 and NFI8), to the combining of private forestry plans, and to the realized drain from non-industrial private forests. The potential allowable cut was calculated using the same MELA system as has been used in the calculation of the national cutting budget. The data consisted of the NIPF holdings (from the TASO planning system) that had been inventoried compartmentwise and had forestry plans made during the years 1984-1992. The NIPF landowners' choices of timber management strategies were clarified by a two-phase mail inquiry. The most preferred strategy obtained was "sustainability" (chosen by 62 % of landowners). The second in order of preference was "finance" (17 %) and the third was "saving" (11 %). "No cuttings", and "maximum cuttings" were the least preferred (9 % and 1 %, resp.). The factors promoting the choices of strategies with intensive cuttings were a) "farmer as forest owner" and "owning fields", b) "increase in the size of the forest holding", c) agriculture and forestry orientation in production, d) "decreasing short term stumpage earning expectations", e) "increasing intensity of future cuttings", and f) "choice of forest taxation system based on site productivity". The potential allowable cut defined in the study was 20 % higher than the average of the realized drain during the years 1988-1993, which in turn, was at the same level as the cutting budget based on the combining of forestry plans in eastern Finland. Respectively, the potential allowable cut defined in the study was 12 % lower than the NFI8-based greatest sustained allowable cut for the 1990s. Using the method presented in this study, timber management strategies can be clarified for non-industrial private forest landowners in different parts of Finland. Based on the choices of timber managemet strategies, regular cutting budgets can be calculated more realistically than before.
Resumo:
The factors affecting the non-industrial, private forest landowners' (hereafter referred to using the acronym NIPF) strategic decisions in management planning are studied. A genetic algorithm is used to induce a set of rules predicting potential cut of the landowners' choices of preferred timber management strategies. The rules are based on variables describing the characteristics of the landowners and their forest holdings. The predictive ability of a genetic algorithm is compared to linear regression analysis using identical data sets. The data are cross-validated seven times applying both genetic algorithm and regression analyses in order to examine the data-sensitivity and robustness of the generated models. The optimal rule set derived from genetic algorithm analyses included the following variables: mean initial volume, landowner's positive price expectations for the next eight years, landowner being classified as farmer, and preference for the recreational use of forest property. When tested with previously unseen test data, the optimal rule set resulted in a relative root mean square error of 0.40. In the regression analyses, the optimal regression equation consisted of the following variables: mean initial volume, proportion of forestry income, intention to cut extensively in future, and positive price expectations for the next two years. The R2 of the optimal regression equation was 0.34 and the relative root mean square error obtained from the test data was 0.38. In both models, mean initial volume and positive stumpage price expectations were entered as significant predictors of potential cut of preferred timber management strategy. When tested with the complete data set of 201 observations, both the optimal rule set and the optimal regression model achieved the same level of accuracy.
Resumo:
Questions of the small size of non-industrial private forest (NIPF) holdings in Finland are considered and factors affecting their partitioning are analyzed. This work arises out of Finnish forest policy statements in which the small average size of holdings has been seen to have a negative influence on the economics of forestry. A survey of the literature indicates that the size of holdings is an important factor determining the costs of logging and silvicultural operations, while its influence on the timber supply is slight. The empirical data are based on a sample of 314 holdings collected by interviewing forest owners in the years 1980-86. In 1990-91 the same holdings were resurveyed by means of a postal inquiry and partly by interviewing forest owners. The principal objective in compiling the data is to assist in quantifying ownership factors that influence partitioning among different kinds of NIPF holdings. Thus the mechanism of partitioning were described and a maximum likelihood logistic regression model was constructed using seven independent holding and ownership variables. One out of four holdings had undergone partitioning in conjunction with a change in ownership, one fifth among family owned holdings and nearly a half among jointly owned holdings. The results of the logistic regression model indicate, for instance, that the odds on partitioning is about three times greater for jointly owned holdings than for family owned ones. Also, the probabilities of partitioning were estimated and the impact of independent dichotomous variables on the probability of partitioning ranged between 0.02 and 0.10. The low value of the Hosmer-Lemeshow test statistic indicates a good fit of the model and the rate of correct classification was estimated to be 88 per cent with a cutoff point of 0.5. The average size of holdings undergoing ownership changes decreased from 29.9 ha to 28.7 ha over the approximate interval 1983-90. In addition, the transition probability matrix showed that the trends towards smaller size categories mostly involved in the small size categories, less than 20 ha. The results of the study can be used in considering the effects of the small size of holdings for forestry and if the purpose is to influence partitioning through forest or rural policy.
Resumo:
The methods of secondary wood processing are assumed to evolve over time and to affect the requirements set for the wood material and its suppliers. The study aimed at analysing the industrial operating modes applied by joinery and furniture manufacturers as sawnwood users. Industrial operating mode was defined as a pattern of important decisions and actions taken by a company which describes the company's level of adjustment in the late-industrial transition. A non-probabilistic sample of 127 companies was interviewed, including companies from Denmark, Germany, the Netherlands, and Finland. Fifty-two of the firms were furniture manufacturers and the other 75 were producing windows and doors. Variables related to business philosophy, production operations, and supplier choice criteria were measured and used as a basis for a customer typology; variables related to wood usage and perceived sawmill performance were measured to be used to profile the customer types. Factor analysis was used to determine the latent dimensions of industrial operating mode. Canonical correlations analysis was applied in developing the final base for classifying the observations. Non-hierarchical cluster analysis was employed to build a five-group typology of secondary wood processing firms; these ranged from traditional mass producers to late-industrial flexible manufacturers. There is a clear connection between the amount of late-industrial elements in a company and the share of special and customised sawnwood it uses. Those joinery or furniture manufacturers that are more late-industrial also are likely to use more component-type wood material and to appreciate customer-oriented technical precision. The results show that the change is towards the use of late-industrial sawnwood materials and late-industrial supplier relationships.
Resumo:
Human activities extract and displace different substances and materials from the earth s crust, thus causing various environmental problems, such as climate change, acidification and eutrophication. As problems have become more complicated, more holistic measures that consider the origins and sources of pollutants have been called for. Industrial ecology is a field of science that forms a comprehensive framework for studying the interactions between the modern technological society and the environment. Industrial ecology considers humans and their technologies to be part of the natural environment, not separate from it. Industrial operations form natural systems that must also function as such within the constraints set by the biosphere. Industrial symbiosis (IS) is a central concept of industrial ecology. Industrial symbiosis studies look at the physical flows of materials and energy in local industrial systems. In an ideal IS, waste material and energy are exchanged by the actors of the system, thereby reducing the consumption of virgin material and energy inputs and the generation of waste and emissions. Companies are seen as part of the chains of suppliers and consumers that resemble those of natural ecosystems. The aim of this study was to analyse the environmental performance of an industrial symbiosis based on pulp and paper production, taking into account life cycle impacts as well. Life Cycle Assessment (LCA) is a tool for quantitatively and systematically evaluating the environmental aspects of a product, technology or service throughout its whole life cycle. Moreover, the Natural Step Sustainability Principles formed a conceptual framework for assessing the environmental performance of the case study symbiosis (Paper I). The environmental performance of the case study symbiosis was compared to four counterfactual reference scenarios in which the actors of the symbiosis operated on their own. The research methods used were process-based life cycle assessment (LCA) (Papers II and III) and hybrid LCA, which combines both process and input-output LCA (Paper IV). The results showed that the environmental impacts caused by the extraction and processing of the materials and the energy used by the symbiosis were considerable. If only the direct emissions and resource use of the symbiosis had been considered, less than half of the total environmental impacts of the system would have been taken into account. When the results were compared with the counterfactual reference scenarios, the net environmental impacts of the symbiosis were smaller than those of the reference scenarios. The reduction in environmental impacts was mainly due to changes in the way energy was produced. However, the results are sensitive to the way the reference scenarios are defined. LCA is a useful tool for assessing the overall environmental performance of industrial symbioses. It is recommended that in addition to the direct effects, the upstream impacts should be taken into account as well when assessing the environmental performance of industrial symbioses. Industrial symbiosis should be seen as part of the process of improving the environmental performance of a system. In some cases, it may be more efficient, from an environmental point of view, to focus on supply chain management instead.
Resumo:
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.