933 resultados para in surfo crystallization
Resumo:
Er3+ doped aluminophosphate glasses with various Na2O/Li2O ratios were prepared at 1250 degrees C using a silica crucible to study mixed alkali effect (MAE). The effect of relative alkali content on glass transition temperature, crystallization temperature and thermal stability were investigated using differential scanning calorimetry (DSC). In addition, apparent activation energies for crystallization, E, were determined employing the Kissinger equation. The effect of Al2O3 content on the magnitude of MAE was also discussed. No mixed-alkali effect is observed on crystallization temperature. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Artículo científico CrystEngComm
Resumo:
In the present work, the nematic glassy state of the non-symmetric LC dimer -(4-cyanobiphenyl-4-yloxy)--(1-pyrenimine-benzylidene-4-oxy) undecane is studied by means of calorimetric and dielectric measurements. The most striking result of the work is the presence of two different glass transition temperatures: one due to the freezing of the flip-flop motions of the bulkier unit of the dimer and the other, at a lower temperature, related to the freezing of the flip-flop and precessional motions of the cyanobiphenyl unit. This result shows the fact that glass transition is the consequence of the freezing of one or more coupled dynamic disorders and not of the disordered phase itself. In order to avoid crystallization when the bulk sample is cooled down, the LC dimer has been confined via the dispersion of -alumina nanoparticles, in several concentrations.
Resumo:
This paper reviews the advances that flash lamp annealing brings to the processing of the most frequently used semiconductor materials, namely silicon and silicon carbide, thus enabling the fabrication of novel microelectronic structures and materials. The paper describes how such developments can translate into important practical applications leading to a wide range of technological benefits. Opportunities in ultra-shallow junction formation, heteroepitaxial growth of thin films of cubic silicon carbide on silicon, and crystallization of amorphous silicon films, along with the technical reasons for using flash lamp annealing are discussed in the context of state-of-the-art materials processing. © 2005 IEEE.
Resumo:
An improved pulsed rapid thermal annealing method has been used to crystallize amorphous silicon films prepared by PECVD. The solid-phase crystallization and dopant activation process can be completed with time-temperature budgets such as 10 cycles of 60-s 550 degrees C thermal bias/l-s 850 degrees C thermal pulse. A mean grain size more than 1000 Angstrom and a Hall mobility of 24.9 cm(2)/V s are obtained in the crystallized films. The results indicate that this annealing method possesses the potential for fabricating large-area and good-quality polycrystalline silicon films on low-cost glass substrate. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
In this study we report on surface crystallization phenomena and propose a solution for the fabrication of long and robust tellurite glass fibers. The bulk tellurite glasses of interest were prepared by melting and quenching techniques. Tellurite glass preforms and fibers were fabricated by suction casting and rod-in-tube drawing methods, respectively. The surfaces of the tellurite bulk glass samples and of the drawn fibers prepared under different controlled atmospheres were examined by X-ray diffraction. When the tellurite glass fibers were drawn in ambient air containing water vapor, four primary kinds of small crystals were found to appear on the fiber surface, alpha-TeO(2), gamma-TeO(2), Zn(2)Te(3)O(8) and Na(2)Zn(3)(CO(3))(4)center dot 3H(2)O. A mechanism for this surface crystallization is proposed and a solution described, using an ultra-dry oxygen gas atmosphere to effectively prevent surface crystallization during fiber drawing. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and alpha-Si layers were deposited by magnetron sputtering respectively and annealed at 480A degrees C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between gamma-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of gamma-Al2O3, which was formed at the early stage of annealing.
Resumo:
In the present work p-type Si specimens were implanted with Cl ions of 100 keV to successively increasing fluences of 1 x 10(15), 5 x 10(15), 1 x 10(16) and 5 x 10(16) ions cm(-2) and subsequently annealed at 1073 K for 30 min. The microstructure was investigated with the transmission electron microscopy (TEM) in both the plane-view and the cross-sectional view. The implanted layer was amorphized after chlorine implantation even at the lowest ion fluence, while re-crystallization of the implanted layer occurs on subsequent annealing at 1073 K. In the annealed specimens implanted above the lowest fluence three layers along depth with different microstructures were found, which include a shallow polycrystalline porous layer, a deeper single-crystalline layer containing high density of gas bubbles, a well separated deeper layer composed of dislocation loops in low density. With increasing ion fluence the thickness of the porous polycrystalline layer increases. It is indicated that chlorine can suppress the epitaxial re-crystallization of implanted silicon, when the implant fluence of Cl ions exceeds a certain level.
Resumo:
Thermal properties and crystallization-behavior of ultrafine fully-vulcanized powdered rubber (UFPR) toughened poly propylene (PP) were studied by Differential scanning calorimetry (DSC) and Wide angle X-ray diffraction (WAXD) measurements. It was found that the fraction of beta-form in the PP crystal increased at first, then sharply deceased up to zero with increasing UFPR content
Resumo:
Morphologies, crystallization behavior and mechanical properties of polypropylene(PP)/syndiotactic 1,2-polybutadiene(s-1,2 PB) blends were investigated. Morphology observation shows the well dispersed domains of s-1,2 PB in PP matrix with the rather small domain sizes from 0.1 to 0.5 mu m when the s-1,2 PB content increases from 5% to 20% (mass fraction) in the blends, and the phase structure tends to become co-continuous as s-1,2 PB content further increases.
Resumo:
When cooled or compressed sufficiently rapidly, a liquid vitrifies into a glassy amorphous state. Vitrification in a dense liquid is associated with jamming of the particles. For hard spheres, the density and degree of order in the final structure depend on the compression rate: simple intuition suggests, and previous computer simulation demonstrates, that slower compression results in states that are both denser and more ordered. In this work, we use the Lubachevsky-Stillinger algorithm to generate a sequence of structurally arrested hard-sphere states by varying the compression rate.
Resumo:
Thin films of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) blend can phase separate upon heating to above its critical temperature. Temperature dependence of the surface composition and morphology in the blend thin film upon thermal treatment was studied using in situ X-ray photoelectron spectroscopy (XPS) and in situ atomic force microscopy (AFM). It was found that in addition to phase separation, the blend component preferentially diffused to and aggregated at the surface of the blend film, leading to the variation of surface composition with temperature. At 185 degrees C, above the critical temperature, the amounts of PMMA and SAN phases were comparable.
Resumo:
The crystallization behaviors and morphology of asymmetric crystalline-crystalline diblock copolymers poly(ethylene oxide-lactide) (PEO-b-PLLA) were investigated using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and microscopic techniques (polarized optical microscopy (POM) and atomic force microscopy (AFM)). Both blocks of PEO5-b-PLLA(16) can be crystallized, which was confirmed by WAXD, while PEO block in PEO5-b-PLLA(30) is difficult to crystallize because of the confinement induced by the high glass transition temperature and crystallization of PLLA block with the microphase separation of the block copolymer.
Resumo:
Crystallization kinetics of syndiotactic polypropylene ( sPP) was observed by light attenuation measurements. The initial stages of temperature dependent sPP crystallization fall in the range of Rayleigh scattering and Rayleigh-Debye-Gans scattering. Initial time and growth time of crystallization were obtained, and the trend of crystallization temperature dependent linear attenuation coefficient on the radius and the index of the refraction of the spherulite were evaluated.