937 resultados para high efficiency


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Laser-Fired Contact (LFC) process, a laser beam fires a metallic layer through a dielectric passivating layer into the silicon wafer to form an electrical contact with the silicon bulk [1]. This laser technique is an interesting alternative for the fabrication of both laboratory and industrial scale high efficiency passivated emitter and rear cell (PERC). One of the principal characteristics of this promising technique is the capability to reduce the recombination losses at the rear surface in crystalline silicon solar cells. Therefore, it is crucial to optimize LFC because this process is one of the most promising concepts to produce rear side point contacts at process speeds compatible with the final industrial application. In that sense, this work investigates the optimization of LFC processing to improve the back contact in silicon solar cells using fully commercial solid state lasers with pulse width in the ns range, thus studying the influence of the wavelength using the three first harmonics (corresponding to wavelengths of 1064 nm, 532 nm and 355 nm). Previous studies of our group focused their attention in other processing parameters as laser fluence, number of pulses, passivating material [2, 3] thickness of the rear metallic contact [4], etc. In addition, the present work completes the parametric optimization by assessing the influence of the laser wavelength on the contact property. In particular we report results on the morphology and electrical behaviour of samples specifically designed to assess the quality of the process. In order to study the influence of the laser wavelength on the contact feature we used as figure of merit the specific contact resistance. In all processes the best results have been obtained using green (532 nm) and UV (355 nm), with excellent values for this magnitude far below 1 mΩcm2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract This work is a contribution to the research and development of the intermediate band solar cell (IBSC), a high efficiency photovoltaic concept that features the advantages of both low and high bandgap solar cells. The resemblance with a low bandgap solar cell comes from the fact that the IBSC hosts an electronic energy band -the intermediate band (IB)- within the semiconductor bandgap. This IB allows the collection of sub-bandgap energy photons by means of two-step photon absorption processes, from the valence band (VB) to the IB and from there to the conduction band (CB). The exploitation of these low energy photons implies a more efficient use of the solar spectrum. The resemblance of the IBSC with a high bandgap solar cell is related to the preservation of the voltage: the open-circuit voltage (VOC) of an IBSC is not limited by any of the sub-bandgaps (involving the IB), but only by the fundamental bandgap (defined from the VB to the CB). Nevertheless, the presence of the IB allows new paths for electronic recombination and the performance of the IBSC is degraded at 1 sun operation conditions. A theoretical argument is presented regarding the need for the use of concentrated illumination in order to circumvent the degradation of the voltage derived from the increase in the recombi¬nation. This theory is supported by the experimental verification carried out with our novel characterization technique consisting of the acquisition of photogenerated current (IL)-VOC pairs under low temperature and concentrated light. Besides, at this stage of the IBSC research, several new IB materials are being engineered and our novel character¬ization tool can be very useful to provide feedback on their capability to perform as real IBSCs, verifying or disregarding the fulfillment of the “voltage preservation” principle. An analytical model has also been developed to assess the potential of quantum-dot (QD)-IBSCs. It is based on the calculation of band alignment of III-V alloyed heterojunc-tions, the estimation of the confined energy levels in a QD and the calculation of the de¬tailed balance efficiency. Several potentially useful QD materials have been identified, such as InAs/AlxGa1-xAs, InAs/GaxIn1-xP, InAs1-yNy/AlAsxSb1-x or InAs1-zNz/Alx[GayIn1-y]1-xP. Finally, a model for the analysis of the series resistance of a concentrator solar cell has also been developed to design and fabricate IBSCs adapted to 1,000 suns. Resumen Este trabajo contribuye a la investigación y al desarrollo de la célula solar de banda intermedia (IBSC), un concepto fotovoltaico de alta eficiencia que auna las ventajas de una célula solar de bajo y de alto gap. La IBSC se parece a una célula solar de bajo gap (o banda prohibida) en que la IBSC alberga una banda de energía -la banda intermedia (IB)-en el seno de la banda prohibida. Esta IB permite colectar fotones de energía inferior a la banda prohibida por medio de procesos de absorción de fotones en dos pasos, de la banda de valencia (VB) a la IB y de allí a la banda de conducción (CB). El aprovechamiento de estos fotones de baja energía conlleva un empleo más eficiente del espectro solar. La semejanza antre la IBSC y una célula solar de alto gap está relacionada con la preservación del voltaje: la tensión de circuito abierto (Vbc) de una IBSC no está limitada por ninguna de las fracciones en las que la IB divide a la banda prohibida, sino que está únicamente limitada por el ancho de banda fundamental del semiconductor (definido entre VB y CB). No obstante, la presencia de la IB posibilita nuevos caminos de recombinación electrónica, lo cual degrada el rendimiento de la IBSC a 1 sol. Este trabajo argumenta de forma teórica la necesidad de emplear luz concentrada para evitar compensar el aumento de la recom¬binación de la IBSC y evitar la degradación del voltage. Lo anterior se ha verificado experimentalmente por medio de nuestra novedosa técnica de caracterización consistente en la adquisicin de pares de corriente fotogenerada (IL)-VOG en concentración y a baja temperatura. En esta etapa de la investigación, se están desarrollando nuevos materiales de IB y nuestra herramienta de caracterizacin está siendo empleada para realimentar el proceso de fabricación, comprobando si los materiales tienen capacidad para operar como verdaderas IBSCs por medio de la verificación del principio de preservación del voltaje. También se ha desarrollado un modelo analítico para evaluar el potencial de IBSCs de puntos cuánticos. Dicho modelo está basado en el cálculo del alineamiento de bandas de energía en heterouniones de aleaciones de materiales III-V, en la estimación de la energía de los niveles confinados en un QD y en el cálculo de la eficiencia de balance detallado. Este modelo ha permitido identificar varios materiales de QDs potencialmente útiles como InAs/AlxGai_xAs, InAs/GaxIni_xP, InAsi_yNy/AlAsxSbi_x ó InAsi_zNz/Alx[GayIni_y]i_xP. Finalmente, también se ha desarrollado un modelado teórico para el análisis de la resistencia serie de una célula solar de concentración. Gracias a dicho modelo se han diseñado y fabricado IBSCs adaptadas a 1.000 soles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En los últimos años la tecnología láser se ha convertido en una herramienta imprescindible en la fabricación de dispositivos fotovoltaicos, ayudando a la consecución de dos objetivos claves para que esta opción energética se convierta en una alternativa viable: reducción de costes de fabricación y aumento de eficiencia de dispositivo. Dentro de las tecnologías fotovoltaicas, las basadas en silicio cristalino (c-Si) siguen siendo las dominantes en el mercado, y en la actualidad los esfuerzos científicos en este campo se encaminan fundamentalmente a conseguir células de mayor eficiencia a un menor coste encontrándose, como se comentaba anteriormente, que gran parte de las soluciones pueden venir de la mano de una mayor utilización de tecnología láser en la fabricación de los mismos. En este contexto, esta Tesis hace un estudio completo y desarrolla, hasta su aplicación en dispositivo final, tres procesos láser específicos para la optimización de dispositivos fotovoltaicos de alta eficiencia basados en silicio. Dichos procesos tienen como finalidad la mejora de los contactos frontal y posterior de células fotovoltaicas basadas en c-Si con vistas a mejorar su eficiencia eléctrica y reducir el coste de producción de las mismas. En concreto, para el contacto frontal se han desarrollado soluciones innovadoras basadas en el empleo de tecnología láser en la metalización y en la fabricación de emisores selectivos puntuales basados en técnicas de dopado con láser, mientras que para el contacto posterior se ha trabajado en el desarrollo de procesos de contacto puntual con láser para la mejora de la pasivación del dispositivo. La consecución de dichos objetivos ha llevado aparejado el alcanzar una serie de hitos que se resumen continuación: - Entender el impacto de la interacción del láser con los distintos materiales empleados en el dispositivo y su influencia sobre las prestaciones del mismo, identificando los efectos dañinos e intentar mitigarlos en lo posible. - Desarrollar procesos láser que sean compatibles con los dispositivos que admiten poca afectación térmica en el proceso de fabricación (procesos a baja temperatura), como los dispositivos de heterounión. - Desarrollar de forma concreta procesos, completamente parametrizados, de definición de dopado selectivo con láser, contactos puntuales con láser y metalización mediante técnicas de transferencia de material inducida por láser. - Definir tales procesos de forma que reduzcan la complejidad de la fabricación del dispositivo y que sean de fácil integración en una línea de producción. - Mejorar las técnicas de caracterización empleadas para verificar la calidad de los procesos, para lo que ha sido necesario adaptar específicamente técnicas de caracterización de considerable complejidad. - Demostrar su viabilidad en dispositivo final. Como se detalla en el trabajo, la consecución de estos hitos en el marco de desarrollo de esta Tesis ha permitido contribuir a la fabricación de los primeros dispositivos fotovoltaicos en España que incorporan estos conceptos avanzados y, en el caso de la tecnología de dopado con láser, ha permitido hacer avances completamente novedosos a nivel mundial. Asimismo los conceptos propuestos de metalización con láser abren vías, completamente originales, para la mejora de los dispositivos considerados. Por último decir que este trabajo ha sido posible por una colaboración muy estrecha entre el Centro Láser de la UPM, en el que la autora desarrolla su labor, y el Grupo de Investigación en Micro y Nanotecnologías de la Universidad Politécnica de Cataluña, encargado de la preparación y puesta a punto de las muestras y del desarrollo de algunos procesos láser para comparación. También cabe destacar la contribución de del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, en la preparación de experimentos específicos de gran importancia en el desarrollo del trabajo. Dichas colaboraciones se han desarrollado en el marco de varios proyectos, tales como el proyecto singular estratégico PSE-MICROSIL08 (PSE-iv 120000-2006-6), el proyecto INNDISOL (IPT-420000-2010-6), ambos financiados por el Fondo Europeo de Desarrollo Regional FEDER (UE) “Una manera de hacer Europa” y el MICINN, y el proyecto del Plan Nacional AMIC (ENE2010-21384-C04-02), cuya financiación ha permitido en gran parte llevar a término este trabajo. v ABSTRACT. Last years lasers have become a fundamental tool in the photovoltaic (PV) industry, helping this technology to achieve two major goals: cost reduction and efficiency improvement. Among the present PV technologies, crystalline silicon (c-Si) maintains a clear market supremacy and, in this particular field, the technological efforts are focussing into the improvement of the device efficiency using different approaches (reducing for instance the electrical or optical losses in the device) and the cost reduction in the device fabrication (using less silicon in the final device or implementing more cost effective production steps). In both approaches lasers appear ideally suited tools to achieve the desired success. In this context, this work makes a comprehensive study and develops, until their implementation in a final device, three specific laser processes designed for the optimization of high efficiency PV devices based in c-Si. Those processes are intended to improve the front and back contact of the considered solar cells in order to reduce the production costs and to improve the device efficiency. In particular, to improve the front contact, this work has developed innovative solutions using lasers as fundamental processing tools to metalize, using laser induced forward transfer techniques, and to create local selective emitters by means of laser doping techniques. On the other side, and for the back contact, and approached based in the optimization of standard laser fired contact formation has been envisaged. To achieve these fundamental goals, a number of milestones have been reached in the development of this work, namely: - To understand the basics of the laser-matter interaction physics in the considered processes, in order to preserve the functionality of the irradiated materials. - To develop laser processes fully compatible with low temperature device concepts (as it is the case of heterojunction solar cells). - In particular, to parameterize completely processes of laser doping, laser fired contacts and metallization via laser transfer of material. - To define such a processes in such a way that their final industrial implementation could be a real option. - To improve widely used characterization techniques in order to be applied to the study of these particular processes. - To probe their viability in a final PV device. Finally, the achievement of these milestones has brought as a consequence the fabrication of the first devices in Spain incorporating these concepts. In particular, the developments achieved in laser doping, are relevant not only for the Spanish science but in a general international context, with the introduction of really innovative concepts as local selective emitters. Finally, the advances reached in the laser metallization approached presented in this work open the door to future developments, fully innovative, in the field of PV industrial metallization techniques. This work was made possible by a very close collaboration between the Laser Center of the UPM, in which the author develops his work, and the Research Group of Micro y Nanotecnology of the Universidad Politécnica de Cataluña, in charge of the preparation and development of samples and the assessment of some laser processes for comparison. As well is important to remark the collaboration of the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, in the preparation of specific experiments of great importance in the development of the work. These collaborations have been developed within the framework of various projects such as the PSE-MICROSIL08 (PSE-120000-2006-6), the project INNDISOL (IPT-420000-2010-6), both funded by the Fondo Europeo de Desarrollo Regional FEDER (UE) “Una manera de hacer Europa” and the MICINN, and the project AMIC (ENE2010-21384-C04-02), whose funding has largely allowed to complete this work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are many the requirements that modern power converters should fulfill. Most of the applications where these converters are used, demand smaller converters with high efficiency, improved power density and a fast dynamic response. For instance, loads like microprocessors demand aggressive current steps with very high slew rates (100A/mus and higher); besides, during these load steps, the supply voltage of the microprocessor should be kept within tight limits in order to ensure its correct performance. The accomplishment of these requirements is not an easy task; complex solutions like advanced topologies - such as multiphase converters- as well as advanced control strategies are often needed. Besides, it is also necessary to operate the converter at high switching frequencies and to use capacitors with high capacitance and low ESR. Improving the dynamic response of power converters does not rely only on the control strategy but also the power topology should be suited to enable a fast dynamic response. Moreover, in later years, a fast dynamic response does not only mean accomplishing fast load steps but output voltage steps are gaining importance as well. At least, two applications that require fast voltage changes can be named: Low power microprocessors. In these devices, the voltage supply is changed according to the workload and the operating frequency of the microprocessor is changed at the same time. An important reduction in voltage dependent losses can be achieved with such changes. This technique is known as Dynamic Voltage Scaling (DVS). Another application where important energy savings can be achieved by means of changing the supply voltage are Radio Frequency Power Amplifiers. For example, RF architectures based on ‘Envelope Tracking’ and ‘Envelope Elimination and Restoration’ techniques can take advantage of voltage supply modulation and accomplish important energy savings in the power amplifier. However, in order to achieve these efficiency improvements, a power converter with high efficiency and high enough bandwidth (hundreds of kHz or even tens of MHz) is necessary in order to ensure an adequate supply voltage. The main objective of this Thesis is to improve the dynamic response of DC-DC converters from the point of view of the power topology. And the term dynamic response refers both to the load steps and the voltage steps; it is also interesting to modulate the output voltage of the converter with a specific bandwidth. In order to accomplish this, the question of what is it that limits the dynamic response of power converters should be answered. Analyzing this question leads to the conclusion that the dynamic response is limited by the power topology and specifically, by the filter inductance of the converter which is found in series between the input and the output of the converter. The series inductance is the one that determines the gain of the converter and provides the regulation capability. Although the energy stored in the filter inductance enables the regulation and the capability of filtering the output voltage, it imposes a limitation which is the concern of this Thesis. The series inductance stores energy and prevents the current from changing in a fast way, limiting the slew rate of the current through this inductor. Different solutions are proposed in the literature in order to reduce the limit imposed by the filter inductor. Many publications proposing new topologies and improvements to known topologies can be found in the literature. Also, complex control strategies are proposed with the objective of improving the dynamic response in power converters. In the proposed topologies, the energy stored in the series inductor is reduced; examples of these topologies are Multiphase converters, Buck converter operating at very high frequency or adding a low impedance path in parallel with the series inductance. Control techniques proposed in the literature, focus on adjusting the output voltage as fast as allowed by the power stage; examples of these control techniques are: hysteresis control, V 2 control, and minimum time control. In some of the proposed topologies, a reduction in the value of the series inductance is achieved and with this, the energy stored in this magnetic element is reduced; less stored energy means a faster dynamic response. However, in some cases (as in the high frequency Buck converter), the dynamic response is improved at the cost of worsening the efficiency. In this Thesis, a drastic solution is proposed: to completely eliminate the series inductance of the converter. This is a more radical solution when compared to those proposed in the literature. If the series inductance is eliminated, the regulation capability of the converter is limited which can make it difficult to use the topology in one-converter solutions; however, this topology is suitable for power architectures where the energy conversion is done by more than one converter. When the series inductor is eliminated from the converter, the current slew rate is no longer limited and it can be said that the dynamic response of the converter is independent from the switching frequency. This is the main advantage of eliminating the series inductor. The main objective, is to propose an energy conversion strategy that is done without series inductance. Without series inductance, no energy is stored between the input and the output of the converter and the dynamic response would be instantaneous if all the devices were ideal. If the energy transfer from the input to the output of the converter is done instantaneously when a load step occurs, conceptually it would not be necessary to store energy at the output of the converter (no output capacitor COUT would be needed) and if the input source is ideal, the input capacitor CIN would not be necessary. This last feature (no CIN with ideal VIN) is common to all power converters. However, when the concept is actually implemented, parasitic inductances such as leakage inductance of the transformer and the parasitic inductance of the PCB, cannot be avoided because they are inherent to the implementation of the converter. These parasitic elements do not affect significantly to the proposed concept. In this Thesis, it is proposed to operate the converter without series inductance in order to improve the dynamic response of the converter; however, on the other side, the continuous regulation capability of the converter is lost. It is said continuous because, as it will be explained throughout the Thesis, it is indeed possible to achieve discrete regulation; a converter without filter inductance and without energy stored in the magnetic element, is capable to achieve a limited number of output voltages. The changes between these output voltage levels are achieved in a fast way. The proposed energy conversion strategy is implemented by means of a multiphase converter where the coupling of the phases is done by discrete two-winding transformers instead of coupledinductors since transformers are, ideally, no energy storing elements. This idea is the main contribution of this Thesis. The feasibility of this energy conversion strategy is first analyzed and then verified by simulation and by the implementation of experimental prototypes. Once the strategy is proved valid, different options to implement the magnetic structure are analyzed. Three different discrete transformer arrangements are studied and implemented. A converter based on this energy conversion strategy would be designed with a different approach than the one used to design classic converters since an additional design degree of freedom is available. The switching frequency can be chosen according to the design specifications without penalizing the dynamic response or the efficiency. Low operating frequencies can be chosen in order to favor the efficiency; on the other hand, high operating frequencies (MHz) can be chosen in order to favor the size of the converter. For this reason, a particular design procedure is proposed for the ‘inductorless’ conversion strategy. Finally, applications where the features of the proposed conversion strategy (high efficiency with fast dynamic response) are advantageus, are proposed. For example, in two-stage power architectures where a high efficiency converter is needed as the first stage and there is a second stage that provides the fine regulation. Another example are RF power amplifiers where the voltage is modulated following an envelope reference in order to save power; in this application, a high efficiency converter, capable of achieving fast voltage steps is required. The main contributions of this Thesis are the following: The proposal of a conversion strategy that is done, ideally, without storing energy in the magnetic element. The validation and the implementation of the proposed energy conversion strategy. The study of different magnetic structures based on discrete transformers for the implementation of the proposed energy conversion strategy. To elaborate and validate a design procedure. To identify and validate applications for the proposed energy conversion strategy. It is important to remark that this work is done in collaboration with Intel. The particular features of the proposed conversion strategy enable the possibility of solving the problems related to microprocessor powering in a different way. For example, the high efficiency achieved with the proposed conversion strategy enables it as a good candidate to be used for power conditioning, as a first stage in a two-stage power architecture for powering microprocessors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extraction of metal impurities during phosphorus diffusion gettering (PDG) is one of the crucial process steps when fabricating high-efficiency solar cells using low-cost, lower-purity silicon wafers. In this work, we show that for a given metal concentration, the size and density of metal silicide precipitates strongly influences the gettering efficacy. Different precipitate size distributions can be already found in silicon wafers grown by different techniques. In our experiment, however, the as-grown distribution of precipitated metals in multicrystalline Si sister wafers is engineered through different annealing treatments in order to control for the concentration and distribution of other defects. A high density of small precipitates is formed during a homogenization step, and a lower density of larger precipitates is formed during extended annealing at 740º C. After PDG, homogenized samples show a decreased interstitial iron concentration compared to as-grown and ripened samples, in agreement with simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports a high efficiency class-F power amplifier based on a gallium nitride high electron mobility transistor (GaN-HEMT), which is designed at the L band of 1640 MHz. The design is based on source and load pull measurements. During the design process, the parasitics of the package of the device are also taken into account in order to achieve the optimal class-F load condition at the intrinsic drain of the transistor. The fabricated class-F power amplifier achieved a maximum drain efficiency (DE) of 77.8% and a output power of 39.6 W on a bandwidth of 280 MHz. Simulation and measurement results have shown good agreement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two quasi-aplanatic free-form solid V-groove collimators are presented in this work. Both optical designs are originally designed using the Simultaneous Multiple Surface method in three dimensions (SMS 3D). The second optically active surface in both free-form V-groove devices is designed a posteriori as a grooved surface. First two mirror (XX) design is designed in order to clearly show the design procedure and working principle of these devices. Second, RXI free-form design is comparable with existing RXI collimators; it is a compact and highly efficient design made of polycarbonate (PC) performing very good colour mixing of the RGGB LED sources placed off-axis. There have been presented rotationally symmetric non-aplanatic high efficiency collimators with colour mixing property to be improved and rotationally symmetric aplanatic devices with good colour mixing property and efficiency to be improved. The aim of this work was to design a free-form device in order to improve colour mixing property of the rotationally symmetric nonaplanatic RXI devices and the efficiency of the aplanatic ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Implementation of a high-efficiency quantum dot intermediate-band solar cell (QD-IBSC) must accompany a sufficient photocurrent generation via IB states. The demonstration of a QD-IBSC is presently undergoing two stages. The first is to develop a technology to fabricate high-density QD stacks or a superlattice of low defect density placed within the active region of a p-i-n SC, and the second is to realize half-filled IB states to maximize the photocurrent generation by two-step absorption of sub-bandgap photons. For this, we have investigated the effect of light concentration on the characteristics of QDSCs comprised of multi-layer stacks of self-organized InAs/GaNAs QDs grown with and without impurity doping in molecular beam epitaxy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modules are an important part of the CPV system. By pursing, in our objective of a 35% efficiency module, we need to look forward a significant improvement in the state of the art of CPV modules since no commercial module is capable of achieving that efficiency. Achieving this efficiency will require high efficiency cells, progress in the optics lenses that are implemented in these modules, and also integration into module. Basic design of 35% CPV module is presented considering for practical and rapid industry application. The output is 385 W while its weight is only 18 kg. In spite of its high concentration ratio reaching 1,000 X, it acceptance angle is as high as 1.1 degree.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decade several prototypes of intermediate band solar cells (IBSCs) have been manufactured. So far, most of these prototypes have been based on InAs/GaAs quantum dots (QDs) in order to implement the IB material. The key operation principles of the IB theory are two photon sub-bandgap (SBG) photocurrent, and output voltage preservation, and both have been experimentally demonstrated at low temperature. At room temperature (RT), however, thermal escape/relaxation between the conduction band (CB) and the IB prevents voltage preservation. To improve this situation, we have produced and characterized the first reported InAs/AlGaAs QD-based IBSCs. For an Al content of 25% in the host material, we have measured an activation energy of 361 meV for the thermal carrier escape. This energy is about 250 meV higher than the energies found in the literature for InAs/GaAs QD, and almost 140 meV higher than the activation energy obtained in our previous InAs/GaAs QD-IBSC prototypes including a specifically designed QD capping layer. This high value is responsible for the suppression of the SBG quantum efficiency under monochromatic illumination at around 220 K. We suggest that, if the energy split between the CB and the IB is large enough, activation energies as high as to suppress thermal carrier escape at room temperature (RT) can be achieved. In this respect, the InAs/AlGaAs system offers new possibilities to overcome some of the problems encountered in InAs/GaAs and opens the path for QD-IBSC devices capable of achieving high efficiency at RT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Envelope Tracking (ET) and Envelope Elimination and Restoration (EER) are two techniques that have been used as a solution for highly efficient linear RF Power Amplifiers (PA). In both techniques the most important part is a dc-dc converter called envelope amplifier that has to supply the RF PA with variable voltage. Besides high efficiency, its bandwidth is very important as well. Envelope amplifier based on parallel combination of a switching dc-dc converter and a linear regulator is an architecture that is widely used due to its simplicity. In this paper we discuss about theoretical limitations of this architecture regarding its efficiency and we demonstrate two possible way of its implementation. In order to derive the presented conclusions, a theoretical model of envelope amplifier's efficiency has been presented. Additionally, the benefits of the new emerging GaN technology for this application have been shown as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The latest video coding standards developed, like HEVC (High Efficiency Video Coding, approved in January 2013), require for their implementation the use of devices able to support a high computational load. Considering that currently it is not enough the usage of one unique Digital Signal Processor (DSP), multicore devices have appeared recently in the market. However, due to its novelty, the working methodology that allows produce solutions for these configurations is in a very initial state, since currently the most part of the work needs to be performed manually. In consequence, the objective set consists on finding methodologies that ease this process. The study has been focused on extend a methodology, under development, for the generation of solutions for PCs and embedded systems. During this study, the standards RVC (Reconfigurable Video Coding) and HEVC have been employed, as well as DSPs of the Texas Instruments company. In its development, it has been tried to address all the factors that influence both the development and deployment of these new implementations of video decoders, ranging from tools up to aspects of the partitioning of algorithms, without this can cause a drop in application performance. The results of this study are the description of the employed methodology, the characterization of the software migration process and performance measurements for the HEVC standard in an RVC-based implementation. RESUMEN Los estándares de codificación de vídeo desarrollados más recientemente, como HEVC (High Efficiency Video Coding, aprobado en enero de 2013), requieren para su implementación el uso de dispositivos capaces de soportar una elevada carga computacional. Teniendo en cuenta que actualmente no es suficiente con utilizar un único Procesador Digital de Señal (DSP), han aparecido recientemente dispositivos multinúcleo en el mercado. Sin embargo, debido a su novedad, la metodología de trabajo que permite elaborar soluciones para tales configuraciones se encuentra en un estado muy inicial, ya que actualmente la mayor parte del trabajo debe realizarse manualmente. En consecuencia, el objetivo marcado consiste en encontrar metodologías que faciliten este proceso. El estudio se ha centrado en extender una metodología, en desarrollo, para la generación de soluciones para PC y sistemas empotrados. Durante dicho estudio se han empleado los estándares RVC (Reconfigurable Video Coding) y HEVC, así como DSPs de la compañía Texas Instruments. En su desarrollo se ha tratado de atender a todos los factores que influyen tanto en el desarrollo como en la puesta en marcha de estas nuevas implementaciones de descodificadores de vídeo; abarcando desde las herramientas a utilizar hasta aspectos del particionado de los algoritmos, sin que por ello se produzca una reducción en el rendimiento de las aplicaciones. Los resultados de este estudio son una descripción de la metodología empleada, la caracterización del proceso de migración de software, y medidas de rendimiento para el estándar HEVC en una implementación basada en RVC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Concentrated Photovoltaics (CPV) promise relies upon the use of high-efficiency triple-junction solar cells (with proven efficiencies of over 44%) and upon high-performance optics that allow for high concentration concurrent with relaxed manufacturing tolerances (all key elements for low-cost mass production). Additionally, uniform illumination is highly desirable for efficiency and reliability reasons. All of these features have to be achieved with inexpensive optics containing only a few (in general no more than 2) optical elements. In this paper we show that the degrees of freedom using free-forms allow the introduction of multiple functionalities required for CPV with just 2 optical elements, one of which is a Fresnel lens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las fuentes de alimentación de modo conmutado (SMPS en sus siglas en inglés) se utilizan ampliamente en una gran variedad de aplicaciones. La tarea más difícil para los diseñadores de SMPS consiste en lograr simultáneamente la operación del convertidor con alto rendimiento y alta densidad de energía. El tamaño y el peso de un convertidor de potencia está dominado por los componentes pasivos, ya que estos elementos son normalmente más grandes y más pesados que otros elementos en el circuito. Para una potencia de salida dada, la cantidad de energía almacenada en el convertidor que ha de ser entregada a la carga en cada ciclo de conmutación, es inversamente proporcional a la frecuencia de conmutación del convertidor. Por lo tanto, el aumento de la frecuencia de conmutación se considera un medio para lograr soluciones más compactas con los niveles de densidad de potencia más altos. La importancia de investigar en el rango de alta frecuencia de conmutación radica en todos los beneficios que se pueden lograr: además de la reducción en el tamaño de los componentes pasivos, el aumento de la frecuencia de conmutación puede mejorar significativamente prestaciones dinámicas de convertidores de potencia. Almacenamiento de energía pequeña y el período de conmutación corto conducen a una respuesta transitoria del convertidor más rápida en presencia de las variaciones de la tensión de entrada o de la carga. Las limitaciones más importantes del incremento de la frecuencia de conmutación se relacionan con mayores pérdidas del núcleo magnético convencional, así como las pérdidas de los devanados debido a los efectos pelicular y proximidad. También, un problema potencial es el aumento de los efectos de los elementos parásitos de los componentes magnéticos - inductancia de dispersión y la capacidad entre los devanados - que causan pérdidas adicionales debido a las corrientes no deseadas. Otro factor limitante supone el incremento de las pérdidas de conmutación y el aumento de la influencia de los elementos parásitos (pistas de circuitos impresos, interconexiones y empaquetado) en el comportamiento del circuito. El uso de topologías resonantes puede abordar estos problemas mediante el uso de las técnicas de conmutaciones suaves para reducir las pérdidas de conmutación incorporando los parásitos en los elementos del circuito. Sin embargo, las mejoras de rendimiento se reducen significativamente debido a las corrientes circulantes cuando el convertidor opera fuera de las condiciones de funcionamiento nominales. A medida que la tensión de entrada o la carga cambian las corrientes circulantes incrementan en comparación con aquellos en condiciones de funcionamiento nominales. Se pueden obtener muchos beneficios potenciales de la operación de convertidores resonantes a más alta frecuencia si se emplean en aplicaciones con condiciones de tensión de entrada favorables como las que se encuentran en las arquitecturas de potencia distribuidas. La regulación de la carga y en particular la regulación de la tensión de entrada reducen tanto la densidad de potencia del convertidor como el rendimiento. Debido a la relativamente constante tensión de bus que se encuentra en arquitecturas de potencia distribuidas los convertidores resonantes son adecuados para el uso en convertidores de tipo bus (transformadores cc/cc de estado sólido). En el mercado ya están disponibles productos comerciales de transformadores cc/cc de dos puertos que tienen muy alta densidad de potencia y alto rendimiento se basan en convertidor resonante serie que opera justo en la frecuencia de resonancia y en el orden de los megahercios. Sin embargo, las mejoras futuras en el rendimiento de las arquitecturas de potencia se esperan que vengan del uso de dos o más buses de distribución de baja tensión en vez de una sola. Teniendo eso en cuenta, el objetivo principal de esta tesis es aplicar el concepto del convertidor resonante serie que funciona en su punto óptimo en un nuevo transformador cc/cc bidireccional de puertos múltiples para atender las necesidades futuras de las arquitecturas de potencia. El nuevo transformador cc/cc bidireccional de puertos múltiples se basa en la topología de convertidor resonante serie y reduce a sólo uno el número de componentes magnéticos. Conmutaciones suaves de los interruptores hacen que sea posible la operación en las altas frecuencias de conmutación para alcanzar altas densidades de potencia. Los problemas posibles con respecto a inductancias parásitas se eliminan, ya que se absorben en los Resumen elementos del circuito. El convertidor se caracteriza con una muy buena regulación de la carga propia y cruzada debido a sus pequeñas impedancias de salida intrínsecas. El transformador cc/cc de puertos múltiples opera a una frecuencia de conmutación fija y sin regulación de la tensión de entrada. En esta tesis se analiza de forma teórica y en profundidad el funcionamiento y el diseño de la topología y del transformador, modelándolos en detalle para poder optimizar su diseño. Los resultados experimentales obtenidos se corresponden con gran exactitud a aquellos proporcionados por los modelos. El efecto de los elementos parásitos son críticos y afectan a diferentes aspectos del convertidor, regulación de la tensión de salida, pérdidas de conducción, regulación cruzada, etc. También se obtienen los criterios de diseño para seleccionar los valores de los condensadores de resonancia para lograr diferentes objetivos de diseño, tales como pérdidas de conducción mínimas, la eliminación de la regulación cruzada o conmutación en apagado con corriente cero en plena carga de todos los puentes secundarios. Las conmutaciones en encendido con tensión cero en todos los interruptores se consiguen ajustando el entrehierro para obtener una inductancia magnetizante finita en el transformador. Se propone, además, un cambio en los señales de disparo para conseguir que la operación con conmutaciones en apagado con corriente cero de todos los puentes secundarios sea independiente de la variación de la carga y de las tolerancias de los condensadores resonantes. La viabilidad de la topología propuesta se verifica a través una extensa tarea de simulación y el trabajo experimental. La optimización del diseño del transformador de alta frecuencia también se aborda en este trabajo, ya que es el componente más voluminoso en el convertidor. El impacto de de la duración del tiempo muerto y el tamaño del entrehierro en el rendimiento del convertidor se analizan en un ejemplo de diseño de transformador cc/cc de tres puertos y cientos de vatios de potencia. En la parte final de esta investigación se considera la implementación y el análisis de las prestaciones de un transformador cc/cc de cuatro puertos para una aplicación de muy baja tensión y de decenas de vatios de potencia, y sin requisitos de aislamiento. Abstract Recently, switch mode power supplies (SMPS) have been used in a great variety of applications. The most challenging issue for designers of SMPS is to achieve simultaneously high efficiency operation at high power density. The size and weight of a power converter is dominated by the passive components since these elements are normally larger and heavier than other elements in the circuit. If the output power is constant, the stored amount of energy in the converter which is to be delivered to the load in each switching cycle is inversely proportional to the converter’s switching frequency. Therefore, increasing the switching frequency is considered a mean to achieve more compact solutions at higher power density levels. The importance of investigation in high switching frequency range comes from all the benefits that can be achieved. Besides the reduction in size of passive components, increasing switching frequency can significantly improve dynamic performances of power converters. Small energy storage and short switching period lead to faster transient response of the converter against the input voltage and load variations. The most important limitations for pushing up the switching frequency are related to increased conventional magnetic core loss as well as the winding loss due to the skin and proximity effect. A potential problem is also increased magnetic parasitics – leakage inductance and capacitance between the windings – that cause additional loss due to unwanted currents. Higher switching loss and the increased influence of printed circuit boards, interconnections and packaging on circuit behavior is another limiting factor. Resonant power conversion can address these problems by using soft switching techniques to reduce switching loss incorporating the parasitics into the circuit elements. However the performance gains are significantly reduced due to the circulating currents when the converter operates out of the nominal operating conditions. As the input voltage or the load change the circulating currents become higher comparing to those ones at nominal operating conditions. Multiple Input-Output Many potential gains from operating resonant converters at higher switching frequency can be obtained if they are employed in applications with favorable input voltage conditions such as those found in distributed power architectures. Load and particularly input voltage regulation reduce a converter’s power density and efficiency. Due to a relatively constant bus voltage in distributed power architectures the resonant converters are suitable for bus voltage conversion (dc/dc or solid state transformation). Unregulated two port dc/dc transformer products achieving very high power density and efficiency figures are based on series resonant converter operating just at the resonant frequency and operating in the megahertz range are already available in the market. However, further efficiency improvements of power architectures are expected to come from using two or more separate low voltage distribution buses instead of a single one. The principal objective of this dissertation is to implement the concept of the series resonant converter operating at its optimum point into a novel bidirectional multiple port dc/dc transformer to address the future needs of power architectures. The new multiple port dc/dc transformer is based on a series resonant converter topology and reduces to only one the number of magnetic components. Soft switching commutations make possible high switching frequencies to be adopted and high power densities to be achieved. Possible problems regarding stray inductances are eliminated since they are absorbed into the circuit elements. The converter features very good inherent load and cross regulation due to the small output impedances. The proposed multiple port dc/dc transformer operates at fixed switching frequency without line regulation. Extensive theoretical analysis of the topology and modeling in details are provided in order to compare with the experimental results. The relationships that show how the output voltage regulation and conduction losses are affected by the circuit parasitics are derived. The methods to select the resonant capacitor values to achieve different design goals such as minimum conduction losses, elimination of cross regulation or ZCS operation at full load of all the secondary side bridges are discussed. ZVS turn-on of all the switches is achieved by relying on the finite magnetizing inductance of the Abstract transformer. A change of the driving pattern is proposed to achieve ZCS operation of all the secondary side bridges independent on load variations or resonant capacitor tolerances. The feasibility of the proposed topology is verified through extensive simulation and experimental work. The optimization of the high frequency transformer design is also addressed in this work since it is the most bulky component in the converter. The impact of dead time interval and the gap size on the overall converter efficiency is analyzed on the design example of the three port dc/dc transformer of several hundreds of watts of the output power for high voltage applications. The final part of this research considers the implementation and performance analysis of the four port dc/dc transformer in a low voltage application of tens of watts of the output power and without isolation requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La concentración fotovoltaica (CPV) es una de las formas más prometedoras de reducir el coste de la energía proveniente del sol. Esto es posible gracias a células solares de alta eficiencia y a una significativa reducción del tamaño de la misma, que está fabricada con costosos materiales semiconductores. Ambos aspectos están íntimamente ligados ya que las altas eficiencias solamente son posibles con materiales y tecnologías de célula caros, lo que forzosamente conlleva una reducción del tamaño de la célula si se quiere lograr un sistema rentable. La reducción en el tamaño de las células requiere que la luz proveniente del sol ha de ser redirigida (es decir, concentrada) hacia la posición de la célula. Esto se logra colocando un concentrador óptico encima de la célula. Estos concentradores para CPV están formados por diferentes elementos ópticos fabricados en materiales baratos, con el fin de reducir los costes de producción. El marco óptimo para el diseño de concentradores es la óptica anidólica u óptica nonimaging. La óptica nonimaging fue desarrollada por primera vez en la década de los años sesenta y ha ido evolucionando significativamente desde entonces. El objetivo de los diseños nonimaging es la transferencia eficiente de energía entre la fuente y el receptor (sol y célula respectivamente, en el caso de la CPV), sin tener en cuenta la formación de imagen. Los sistemas nonimaging suelen ser simples, están compuestos de un menor número de superficies que los sistemas formadores de imagen y son más tolerantes a errores de fabricación. Esto hace de los sistemas nonimaging una herramienta fundamental, no sólo en el diseño de concentradores fotovoltaicos, sino también en el diseño de otras aplicaciones como iluminación, proyección y comunicaciones inalámbricas ópticas. Los concentradores ópticos nonimaging son adecuados para aplicaciones CPV porque el objetivo no es la reproducción de una imagen exacta del sol (como sería el caso de las ópticas formadoras de imagen), sino simplemente la colección de su energía sobre la célula solar. Los concentradores para CPV pueden presentar muy diferentes arquitecturas y elementos ópticos, dando lugar a una gran variedad de posibles diseños. El primer elemento óptico que es atravesado por la luz del sol se llama Elemento Óptico Primario (POE en su nomenclatura anglosajona) y es el elemento más determinante a la hora de definir la forma y las propiedades del concentrador. El POE puede ser refractivo (lente) o reflexivo (espejo). Esta tesis se centra en los sistemas CPV que presentan lentes de Fresnel como POE, que son lentes refractivas delgadas y de bajo coste de producción que son capaces de concentrar la luz solar. El capítulo 1 expone una breve introducción a la óptica geométrica y no formadora de imagen (nonimaging), explicando sus fundamentos y conceptos básicos. Tras ello, la integración Köhler es presentada en detalle, explicando sus principios, válidos tanto para aplicaciones CPV como para iluminación. Una introducción a los conceptos fundamentales de CPV también ha sido incluida en este capítulo, donde se analizan las propiedades de las células solares multiunión y de los concentradores ópticos empleados en los sistemas CPV. El capítulo se cierra con una descripción de las tecnologías existentes empleadas para la fabricación de elementos ópticos que componen los concentradores. El capítulo 2 se centra principalmente en el diseño y desarrollo de los tres concentradores ópticos avanzados Fresnel Köhler que se presentan en esta tesis: Fresnel-Köhler (FK), Fresnel-Köhler curvo (DFK) y Fresnel-Köhler con cavidad (CFK). Todos ellos llevan a cabo integración Köhler y presentan una lente de Fresnel como su elemento óptico primario. Cada uno de estos concentradores CPV presenta sus propias propiedades y su propio procedimiento de diseño. Además, presentan todas las características que todo concentrador ha de tener: elevado factor de concentración, alta tolerancia de fabricación, alta eficiencia óptica, irradiancia uniforme sobre la superficie de la célula y bajo coste de producción. Los concentradores FK y DFK presentan una configuración de cuatro sectores para lograr la integración Köhler. Esto quiere decir que POE y SOE se dividen en cuatro sectores simétricos cada uno, y cada sector del POE trabaja conjuntamente con su correspondiente sector de SOE. La principal diferencia entre los dos concentradores es que el POE del FK es una lente de Fresnel plana, mientras que una lente curva de Fresnel es empleada como POE del DFK. El concentrador CFK incluye una cavidad de confinamiento externo integrada, que es un elemento óptico capaz de recuperar los rayos reflejados por la superficie de la célula con el fin de ser reabsorbidos por la misma. Por tanto, se aumenta la absorción de la luz, lo que implica un aumento en la eficiencia del módulo. Además, este capítulo también explica un método de diseño alternativo para los elementos faceteados, especialmente adecuado para las lentes curvas como el POE del DFK. El capítulo 3 se centra en la caracterización y medidas experimentales de los concentradores ópticos presentados en el capítulo 2, y describe sus procedimientos. Estos procedimientos son en general aplicables a cualquier concentrador basado en una lente de Fresnel, e incluyen tres tipos principales de medidas experimentales: eficiencia eléctrica, ángulo de aceptancia y uniformidad de la irradiancia en el plano de la célula. Los resultados que se muestran a lo largo de este capítulo validarán a través de medidas a sol real las características avanzadas que presentan los concentradores Köhler, y que se demuestran en el capítulo 2 mediante simulaciones de rayos. Cada concentrador (FK, DFK y CFK) está diseñado y optimizado teniendo en cuenta condiciones de operación realistas. Su rendimiento se modela de forma exhaustiva mediante el trazado de rayos en combinación con modelos distribuidos para la célula. La tolerancia es un asunto crítico de cara al proceso de fabricación, y ha de ser máxima para obtener sistemas de producción en masa rentables. Concentradores con tolerancias limitadas generan bajadas significativas de eficiencia a nivel de array, causadas por el desajuste de corrientes entre los diferentes módulos (principalmente debido a errores de alineación en la fabricación). En este sentido, la sección 3.5 presenta dos métodos matemáticos que estiman estas pérdidas por desajuste a nivel de array mediante un análisis de sus curvas I-V, y por tanto siendo innecesarias las medidas a nivel de mono-módulo. El capítulo 3 también describe la caracterización indoor de los elementos ópticos que componen los concentradores, es decir, de las lentes de Fresnel que actúan como POE y de los secundarios free-form. El objetivo de esta caracterización es el de evaluar los adecuados perfiles de las superficies y las transmisiones ópticas de los diferentes elementos analizados, y así hacer que el rendimiento del módulo sea el esperado. Esta tesis la cierra el capítulo 4, en el que la integración Köhler se presenta como una buena alternativa para obtener distribuciones uniformes en aplicaciones de iluminación de estado sólido (iluminación con LED), siendo particularmente eficaz cuando se requiere adicionalmente una buena mezcla de colores. En este capítulo esto se muestra a través del ejemplo particular de un concentrador DFK, el cual se ha utilizado para aplicaciones CPV en los capítulos anteriores. Otra alternativa para lograr mezclas cromáticas apropiadas está basada en un método ya conocido (deflexiones anómalas), y también se ha utilizado aquí para diseñar una lente TIR aplanética delgada. Esta lente cumple la conservación de étendue, asegurando así que no hay bloqueo ni dilución de luz simultáneamente. Ambos enfoques presentan claras ventajas sobre las técnicas clásicas empleadas en iluminación para obtener distribuciones de iluminación uniforme: difusores y mezcla caleidoscópica mediante guías de luz. ABSTRACT Concentrating Photovoltaics (CPV) is one of the most promising ways of reducing the cost of energy collected from the sun. This is possible thanks to both, very high-efficiency solar cells and a large decrease in the size of cells, which are made of costly semiconductor materials. Both issues are closely linked since high efficiency values are only possible with expensive cell materials and technologies, implying a compulsory area reduction if cost-effectiveness is desired. The reduction in the cell size requires that light coming from the sun must be redirected (i.e. concentrated) towards the cell position. This is achieved by placing an optical concentrator system on top of the cell. These CPV concentrators consist of different optical elements manufactured on cheap materials in order to maintain low production costs. The optimal framework for the design of concentrators is nonimaging optics. Nonimaging optics was first developed in the 60s decade and has been largely developed ever since. The aim of nonimaging devices is the efficient transfer of light power between the source and the receiver (sun and cell respectively in the case of CPV), disregarding image formation. Nonimaging systems are usually simple, comprised of fewer surfaces than imaging systems and are more tolerant to manufacturing errors. This renders nonimaging optics a fundamental tool, not only in the design of photovoltaic concentrators, but also in the design of other applications as illumination, projection and wireless optical communications. Nonimaging optical concentrators are well suited for CPV applications because the goal is not the reproduction of an exact image of the sun (as imaging optics would provide), but simply the collection of its energy on the solar cell. Concentrators for CPV may present very different architectures and optical elements, resulting in a vast variety of possible designs. The first optical element that sunlight goes through is called the Primary Optical Element (POE) and is the most determinant element in order to define the shape and properties of the whole concentrator. The POE can be either refractive (lens) or reflective (mirror). This thesis focuses on CPV systems based on Fresnel lenses as POE, which are thin and inexpensive refractive lenses able to concentrate sunlight. Chapter 1 exposes a short introduction to geometrical and nonimaging optics, explaining their fundamentals and basic concepts. Then, the Köhler integration is presented in detail, explaining its principles, valid for both applications: CPV and illumination. An introduction to CPV fundamental concepts is also included in this chapter, analyzing the properties of multijunction solar cells and optical concentrators employed in CPV systems. The chapter is closed with a description of the existing technologies employed for the manufacture of optical elements composing the concentrator. Chapter 2 is mainly devoted to the design and development of the three advanced Fresnel Köhler optical concentrators presented in this thesis work: Fresnel-Köhler (FK), Dome-shaped Fresnel-Köhler (DFK) and Cavity Fresnel-Köhler (CFK). They all perform Köhler integration and comprise a Fresnel lens as their Primary Optical Element. Each one of these CPV concentrators presents its own characteristics, properties and its own design procedure. Their performances include all the key issues in a concentrator: high concentration factor, large tolerances, high optical efficiency, uniform irradiance on the cell surface and low production cost. The FK and DFK concentrators present a 4-fold configuration in order to perform the Köhler integration. This means that POE and SOE are divided into four symmetric sectors each one, working each POE sector with its corresponding SOE sector by pairs. The main difference between both concentrators is that the POE of the FK is a flat Fresnel lens, while a dome-shaped (curved) Fresnel lens performs as the DFK’s POE. The CFK concentrator includes an integrated external confinement cavity, which is an optical element able to recover rays reflected by the cell surface in order to be re-absorbed by the cell. It increases the light absorption, entailing an increase in the efficiency of the module. Additionally, an alternative design method for faceted elements will also be explained, especially suitable for dome-shaped lenses as the POE of the DFK. Chapter 3 focuses on the characterization and experimental measurements of the optical concentrators presented in Chapter 2, describing their procedures. These procedures are in general applicable to any Fresnel-based concentrator as well and include three main types of experimental measurements: electrical efficiency, acceptance angle and irradiance uniformity at the solar cell plane. The results shown along this chapter will validate through outdoor measurements under real sun operation the advanced characteristics presented by the Köhler concentrators, which are demonstrated in Chapter 2 through raytrace simulation: high optical efficiency, large acceptance angle, insensitivity to manufacturing tolerances and very good irradiance uniformity on the cell surface. Each concentrator (FK, DFK and CFK) is designed and optimized looking at realistic performance characteristics. Their performances are modeled exhaustively using ray tracing combined with cell modeling, taking into account the major relevant factors. The tolerance is a critical issue when coming to the manufacturing process in order to obtain cost-effective mass-production systems. Concentrators with tight tolerances result in significant efficiency drops at array level caused by current mismatch among different modules (mainly due to manufacturing alignment errors). In this sense, Section 3.5 presents two mathematical methods that estimate these mismatch losses for a given array just by analyzing its full-array I-V curve, hence being unnecessary any single mono-module measurement. Chapter 3 also describes the indoor characterization of the optical elements composing the concentrators, i.e. the Fresnel lenses acting as POEs and the free-form SOEs. The aim of this characterization is to assess the proper surface profiles and optical transmissions of the different elements analyzed, so they will allow for the expected module performance. This thesis is closed by Chapter 4, in which Köhler integration is presented as a good approach to obtain uniform distributions in Solid State Lighting applications (i.e. illumination with LEDs), being particularly effective when dealing with color mixing requirements. This chapter shows it through the particular example of a DFK concentrator, which has been used for CPV applications in the previous chapters. An alternative known method for color mixing purposes (anomalous deflections) has also been used to design a thin aplanatic TIR lens. This lens fulfills conservation of étendue, thus ensuring no light blocking and no light dilution at the same time. Both approaches present clear advantages over the classical techniques employed in lighting to obtain uniform illumination distributions: diffusers and kaleidoscopic lightpipe mixing.