823 resultados para granular computing
Resumo:
We study the response of dry granular materials to external stress using experiment, simulation, and theory. We derive a Ginzburg-Landau functional that enforces mechanical stability and positivity of contact forces. In this framework, the elastic moduli depend only on the applied stress. A combination of this feature and the positivity constraint leads to stress correlations whose shape and magnitude are extremely sensitive to the nature of the applied stress. The predictions from the theory describe the stress correlations for both simulations and experiments semiquantitatively. © 2009 The American Physical Society.
Resumo:
If you walk on sand, it supports your weight. How do the disordered forces between particles in sand organize, to keep you from sinking? This simple question is surprisingly difficult to answer experimentally: measuring forces in three dimensions, between deeply buried grains, is challenging. Here we describe experiments in which we have succeeded in measuring forces inside a granular packing subject to controlled deformations. We connect the measured micro-scale forces to the macro-scale packing force response with an averaging, mean field calculation. This calculation explains how the combination of packing structure and contact deformations produce the observed nontrivial mechanical response of the packing, revealing a surprising microscopic particle deformation enhancement mechanism.
Resumo:
We study experimentally and computationally the dynamics of granular flow during impacts where intruders strike a collection of disks from above. In the regime where granular force dynamics are much more rapid than the intruder motion, we find that the particle flow near the intruder is proportional to the instantaneous intruder speed; it is essentially constant when normalized by that speed. The granular flow is nearly divergence free and remains in balance with the intruder, despite the latter's rapid deceleration. Simulations indicate that this observation is insensitive to grain properties, which can be explained by the separation of time scales between intergrain force dynamics and intruder dynamics. Assuming there is a comparable separation of time scales, we expect that our results are applicable to a broad class of dynamic or transient granular flows. Our results suggest that descriptions of static-in-time granular flows might be extended or modified to describe these dynamic flows. Additionally, we find that accurate grain-grain interactions are not necessary to correctly capture the granular flow in this regime.
Resumo:
We have explored isotropically jammed states of semi-2D granular materials through cyclic compression. In each compression cycle, systems of either identical ellipses or bidisperse disks transition between jammed and unjammed states. We determine the evolution of the average pressure P and structure through consecutive jammed states. We observe a transition point ϕ_{m} above which P persists over many cycles; below ϕ_{m}, P relaxes slowly. The relaxation time scale associated with P increases with packing fraction, while the relaxation time scale for collective particle motion remains constant. The collective motion of the ellipses is hindered compared to disks because of the rotational constraints on elliptical particles.
Resumo:
Review of: Rosalind W. Picard, Affective Computing
Resumo:
We report on practical experience using the Oxford BSP Library to parallelize a large electromagnetic code, the British Aerospace finite-difference time-domain code EMMA T:FD3D. The Oxford BS Library is one of the first realizations of the Bulk Synchronous Parallel computational model to be targeted at numerically intensive scientific (typically Fortran) computing. The BAe EMMA code is one of the first large-scale applications to be parallelized using this library, and it is an important demonstration of the cost effectiveness of the BSP approach. We illustrate how BSP cost-modelling techniques can be used to predict and optimize performance for single-source programs across different parallel platforms. We provide predicted and observed performance figures for an industrial-strength, single-source parallel code for a variety of real parallel architectures: shared memory multiprocessors, workstation clusters and massively parallel platforms.
Resumo:
In this paper, the framework is described for the modelling of granular material by employing Computational Fluid Dynamics (CFD). This is achieved through the use and implementation in the continuum theory of constitutive relations, which are derived in a granular dynamics framework and parametrise particle interactions that occur at the micro-scale level. The simulation of a process often met in bulk solids handling industrial plants involving granular matter, (i.e. filling of a flat-bottomed bin with a binary material mixture through pneumatic conveying-emptying of the bin in core flow mode-pneumatic conveying of the material coming out of a the bin) is presented. The results of the presented simulation demonstrate the capability of the numerical model to represent successfully key granular processes (i.e. segregation/degradation), the prediction of which is of great importance in the process engineering industry.
Resumo:
In this paper a continuum model for the prediction of segregation in granular material is presented. The numerical framework, a 3-D, unstructured grid, finite-volume code is described, and the micro-physical parametrizations, which are used to describe the processes and interactions at the microscopic level that lead to segregation, are analysed. Numerical simulations and comparisons with experimental data are then presented and conclusions are drawn on the capability of the model to accurately simulate the behaviour of granular matter during flow.
Resumo:
Social network analysts have tried to capture the idea of social role explicitly by proposing a framework that precisely gives conditions under which group actors are playing equivalent roles. They term these methods positional analysis techniques. The most general definition is regular equivalence which captures the idea that equivalent actors are related in a similar way to equivalent alters. Regular equivalence gives rise to a whole class of partitions on a network. Given a network we have two different computational problems. The first is how to find a particular regular equivalence. An algorithm exists to find the largest regular partition but there are not efficient algorithms to test whether there is a regular k-partition. That is a partition in k groups that is regular. In addition, when dealing with real data, it is unlikely that any regular partitions exist. To overcome this problem relaxations of regular equivalence have been proposed along with optimisation techniques to find nearly regular partitions. In this paper we review the algorithms that have developed to find particular regular equivalences and look at some of the recent theoretical results which give an insight into the complexity of finding regular partitions.
Resumo:
In this article, suggestions are made for introducing an individual element into formative assessment of the ability to use computer software for statistics.
Resumo:
Computer equipment, once viewed as leading edge, is quickly condemned as obsolete and banished to basement store rooms or rubbish bins. The magpie instincts of some of the academics and technicians at the University of Greenwich, London, preserved some such relics in cluttered offices and garages to the dismay of colleagues and partners. When the University moved into its new campus in the historic buildings of the Old Royal Naval College in the center of Greenwich, corridor space in King William Court provided an opportunity to display some of this equipment so that students could see these objects and gain a more vivid appreciation of their subject's history.
Resumo:
The present work uses the discrete element method (DEM) to describe assemblies of particulate bulk materials. Working numerical descriptions of entire processes using this scheme are infeasible because of the very large number of elements (1012 or more in a moderately sized industrial silo). However it is possible to capture much of the essential bulk mechanics through selective DEM on important regions of an assembly, thereafter using the information in continuum numerical descriptions of particulate processes. The continuum numerical model uses population balances of the various components in bulk solid mixtures. It depends on constitutive relationships for the internal transfer, creation and/or destruction of components within the mixture. In this paper we show the means of generating such relationships for two important flow phenomena – segregation whereby particles differing in some important property (often size) separate into discrete phases, and degradation, whereby particles break into sub-elements, through impact on each other or shearing. We perform DEM simulations under a range of representative conditions, extracting the important parameters for the relevant transfer, creation and/or destruction of particles in certain classes within the assembly over time. Continuum predictions of segregation and degradation using this scheme are currently being successfully validated against bulk experimental data and are beginning to be used in schemes to improve the design and operation of bulk solids process plant.
Resumo:
In this paper, a Computational Fluid Dynamics framework is presented for the modelling of key processes which involve granular material (i.e. segregation, degradation, caking). Appropriate physical models and sophisticated algorithms have been developed for the correct representation of the different material components in a granular mixture. The various processes, which arise from the micromechanical properties of the different mixture species can be obtained and parametrised in a DEM / experimental framework, thus enabling the continuum theory to correctly account for the micromechanical properties of a granular system. The present study establishes the link between the micromechanics and continuum theory and demonstrates the model capabilities in simulations of processes which are of great importance to the process engineering industry and involve granular materials in complex geometries.