993 resultados para grant applications
Resumo:
This work addresses fundamental issues in the mathematical modelling of the diffusive motion of particles in biological and physiological settings. New mathematical results are proved and implemented in computer models for the colonisation of the embryonic gut by neural cells and the propagation of electrical waves in the heart, offering new insights into the relationships between structure and function. In particular, the thesis focuses on the use of non-local differential operators of non-integer order to capture the main features of diffusion processes occurring in complex spatial structures characterised by high levels of heterogeneity.
Resumo:
Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.
Resumo:
The ability to estimate the expected Remaining Useful Life (RUL) is critical to reduce maintenance costs, operational downtime and safety hazards. In most industries, reliability analysis is based on the Reliability Centred Maintenance (RCM) and lifetime distribution models. In these models, the lifetime of an asset is estimated using failure time data; however, statistically sufficient failure time data are often difficult to attain in practice due to the fixed time-based replacement and the small population of identical assets. When condition indicator data are available in addition to failure time data, one of the alternate approaches to the traditional reliability models is the Condition-Based Maintenance (CBM). The covariate-based hazard modelling is one of CBM approaches. There are a number of covariate-based hazard models; however, little study has been conducted to evaluate the performance of these models in asset life prediction using various condition indicators and data availability. This paper reviews two covariate-based hazard models, Proportional Hazard Model (PHM) and Proportional Covariate Model (PCM). To assess these models’ performance, the expected RUL is compared to the actual RUL. Outcomes demonstrate that both models achieve convincingly good results in RUL prediction; however, PCM has smaller absolute prediction error. In addition, PHM shows over-smoothing tendency compared to PCM in sudden changes of condition data. Moreover, the case studies show PCM is not being biased in the case of small sample size.
Resumo:
The proliferation of the web presents an unsolved problem of automatically analyzing billions of pages of natural language. We introduce a scalable algorithm that clusters hundreds of millions of web pages into hundreds of thousands of clusters. It does this on a single mid-range machine using efficient algorithms and compressed document representations. It is applied to two web-scale crawls covering tens of terabytes. ClueWeb09 and ClueWeb12 contain 500 and 733 million web pages and were clustered into 500,000 to 700,000 clusters. To the best of our knowledge, such fine grained clustering has not been previously demonstrated. Previous approaches clustered a sample that limits the maximum number of discoverable clusters. The proposed EM-tree algorithm uses the entire collection in clustering and produces several orders of magnitude more clusters than the existing algorithms. Fine grained clustering is necessary for meaningful clustering in massive collections where the number of distinct topics grows linearly with collection size. These fine-grained clusters show an improved cluster quality when assessed with two novel evaluations using ad hoc search relevance judgments and spam classifications for external validation. These evaluations solve the problem of assessing the quality of clusters where categorical labeling is unavailable and unfeasible.
Resumo:
This project constructed virtual plant leaf surfaces from digitised data sets for use in droplet spray models. Digitisation techniques for obtaining data sets for cotton, chenopodium and wheat leaves are discussed and novel algorithms for the reconstruction of the leaves from these three plant species are developed. The reconstructed leaf surfaces are included into agricultural droplet spray models to investigate the effect of the nozzle and spray formulation combination on the proportion of spray retained by the plant. A numerical study of the post-impaction motion of large droplets that have formed on the leaf surface is also considered.
Resumo:
The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Carbon, one of the most abundant materials found on earth, and its allotrope forms have been proposed in this project for novel energy generation and storage devices. This studied investigated the synthesis and properties of these carbon nanomaterials for applications in organic solar cells and supercapacitors.
Resumo:
The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.
Resumo:
This thesis examined the use of acoustic sensors for monitoring avian biodiversity. Acoustic sensors have the potential to significantly increase the spatial and temporal scale of ecological observations, however acoustic recordings of the environment can be opaque and complex. This thesis developed methods for analysing large volumes of acoustic data to maximise the detection of bird species, and compared the results of acoustic sensor biodiversity surveys with traditional bird survey techniques.
Resumo:
A large range of underground mining equipment makes use of compliant hydraulic arms for tasks such as rock-bolting, rock breaking, explosive charging and shotcreting. This paper describes a laboratory model electo-hydraulic manipulator which is used to prototype novel control and sensing techniques. The research is aimed at improving the safety and productivity of these mining tasks through automation, in particular the application of closed-loop visual positioning of the machine's end-effector.
Resumo:
The mining industry presents us with a number of ideal applications for sensor based machine control because of the unstructured environment that exists within each mine. The aim of the research presented here is to increase the productivity of existing large compliant mining machines by retrofitting with enhanced sensing and control technology. The current research focusses on the automatic control of the swing motion cycle of a dragline and an automated roof bolting system. We have achieved: * closed-loop swing control of an one-tenth scale model dragline; * single degree of freedom closed-loop visual control of an electro-hydraulic manipulator in the lab developed from standard components.
Resumo:
Background: Nurses have a pivotal role in providing, facilitating, advocating and promoting the best possible care and outcome for the client. To ensure decisions and actions are based on current standards of practice, nurses must be accountable for participation in ongoing education in their area of practice. Aim: To present a description of the current state of Polish nursing education and specialized model for neurological and neurosurgical nursing that can be utilized for both undergraduate and postgraduate continuing education in Poland. Data sources: The model of postgraduate training introduced in Poland in 2000 was taken into consideration in developing the framework for neuroscience nursing postgraduate continuing education presented here. The framework for neurological continuing education is also based on a review of the literature and is consistent with Poland’s legally binding professional nursing regulations (normative and implementing regulations). Conclusion: The model demonstrates the need for the content of pre- and post-undergraduate degree education in neurological nursing to be graduated, based on the frameworks for undergraduate education (acquiring the knowledge and basic skills for performing the work of nurses) and postgraduate education (acquiring knowledge and specialist skills necessary for providing advanced nursing care including medical acts on patients with nervous system diseases). Implications for nursing: New and advanced skills gained in specialization training can be applied to complex functions, roles and professional tasks undertaken by nurses in relation to care of patients with neurological dysfunctions.
Resumo:
Graphene has emerged as one of the most exciting materials of the 21st century due to its unique properties which have demonstrated great potential for applications in energy storage, flexible electronics and multifunctional composites. This thesis has established a new technique for investigating the structure-property relationship of graphene-polymer nanocomposites at micro and nanoscales. The outcomes can help gain a fundamental understanding of the toughening mechanism in these novel nanocomposites and benefit the development of broad graphene based materials and devices.
Resumo:
Objective: To prospectively test two simplified peer review processes, estimate the agreement between the simplified and official processes, and compare the costs of peer review. Design, participants and setting: A prospective parallel study of Project Grant proposals submitted in 2013 to the National Health and Medical Research Council (NHMRC) of Australia. The official funding outcomes were compared with two simplified processes using proposals in Public Health and Basic Science. The two simplified processes were: panels of 7 reviewers who met face-to-face and reviewed only the nine-page research proposal and track record (simplified panel); and 2 reviewers who independently reviewed only the nine-page research proposal (journal panel). The official process used panels of 12 reviewers who met face-to-face and reviewed longer proposals of around 100 pages. We compared the funding outcomes of 72 proposals that were peer reviewed by the simplified and official processes. Main outcome measures: Agreement in funding outcomes; costs of peer review based on reviewers’ time and travel costs. Results: The agreement between the simplified and official panels (72%, 95% CI 61% to 82%), and the journal and official panels (74%, 62% to 83%), was just below the acceptable threshold of 75%. Using the simplified processes would save $A2.1–$A4.9 million per year in peer review costs. Conclusions: Using shorter applications and simpler peer review processes gave reasonable agreement with the more complex official process. Simplified processes save time and money that could be reallocated to actual research. Funding agencies should consider streamlining their application processes.
Labeling white matter tracts in hardi by fusing multiple tract atlases with applications to genetics
Resumo:
Accurate identification of white matter structures and segmentation of fibers into tracts is important in neuroimaging and has many potential applications. Even so, it is not trivial because whole brain tractography generates hundreds of thousands of streamlines that include many false positive fibers. We developed and tested an automatic tract labeling algorithm to segment anatomically meaningful tracts from diffusion weighted images. Our multi-atlas method incorporates information from multiple hand-labeled fiber tract atlases. In validations, we showed that the method outperformed the standard ROI-based labeling using a deformable, parcellated atlas. Finally, we show a high-throughput application of the method to genetic population studies. We use the sub-voxel diffusion information from fibers in the clustered tracts based on 105-gradient HARDI scans of 86 young normal twins. The whole workflow shows promise for larger population studies in the future.
Resumo:
We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD)". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC) each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.