959 resultados para geometries
Resumo:
Seismic structure above and below the core-mantle boundary (CMB) has been studied through use of travel time and waveform analyses of several different seismic wave groups. Anomalous systematic trends in observables document mantle heterogeneity on both large and small scales. Analog and digital data has been utilized, and in many cases the analog data has been optically scanned and digitized prior to analysis.
Differential travel times of S - SKS are shown to be an excellent diagnostic of anomalous lower mantle shear velocity (V s) structure. Wavepath geometries beneath the central Pacific exhibit large S- SKS travel time residuals (up to 10 sec), and are consistent with a large scale 0(1000 km) slower than average V_s region (≥3%). S - SKS times for paths traversing this region exhibit smaller scale patterns and trends 0(100 km) indicating V_s perturbations on many scale lengths. These times are compared to predictions of three tomographically derived aspherical models: MDLSH of Tanimoto [1990], model SH12_WM13 of Suet al. [1992], and model SH.10c.17 of Masters et al. [1992]. Qualitative agreement between the tomographic model predictions and observations is encouraging, varying from fair to good. However, inconsistencies are present and suggest anomalies in the lower mantle of scale length smaller than the present 2000+ km scale resolution of tomographic models. 2-D wave propagation experiments show the importance of inhomogeneous raypaths when considering lateral heterogeneities in the lowermost mantle.
A dataset of waveforms and differential travel times of S, ScS, and the arrival from the D" layer, Scd, provides evidence for a laterally varying V_s velocity discontinuity at the base of the mantle. Two different localized D" regions beneath the central Pacific have been investigated. Predictions from a model having a V_s discontinuity 180 km above the CMB agree well with observations for an eastern mid-Pacific CMB region. This thickness differs from V_s discontinuity thicknesses found in other regions, such as a localized region beneath the western Pacific, which average near 280 km. The "sharpness" of the V_s jump at the top of D", i.e., the depth range over which the V_s increase occurs, is not resolved by our data, and our data can in fact may be modeled equally well by a lower mantle with the increase in V_s at the top of D" occurring over a 100 krn depth range. It is difficult at present to correlate D" thicknesses from this study to overall lower mantle heterogeneity, due to uncertainties in the 3-D models, as well as poor coverage in maps of D" discontinuity thicknesses.
P-wave velocity structure (V_p) at the base of the mantle is explored using the seismic phases SKS and SPdKS. SPdKS is formed when SKS waves at distances around 107° are incident upon the CMB with a slowness that allows for coupling with diffracted P-waves at the base of the mantle. The P-wave diffraction occurs at both the SKS entrance and exit locations of the outer core. SP_dKS arrives slightly later in time than SKS, having a wave path through the mantle and core very close to SKS. The difference time between SKS and SP_dKS strongly depends on V_p at the base of the mantle near SK Score entrance and exit points. Observations from deep focus Fiji-Tonga events recorded by North American stations, and South American events recorded by European and Eurasian stations exhibit anomalously large SP_dKS - SKS difference times. SKS and the later arriving SP_dKS phase are separated by several seconds more than predictions made by 1-D reference models, such as the global average PREM [Dziewonski and Anderson, 1981] model. Models having a pronounced low-velocity zone (5%) in V_p in the bottom 50-100 km of the mantle predict the size of the observed SP_dK S-SKS anomalies. Raypath perturbations from lower mantle V_s structure may also be contributing to the observed anomalies.
Outer core structure is investigated using the family of SmKS (m=2,3,4) seismic waves. SmKS are waves that travel as S-waves in the mantle, P-waves in the core, and reflect (m-1) times on the underside of the CMB, and are well-suited for constraining outermost core V_p structure. This is due to closeness of the mantle paths and also the shallow depth range these waves travel in the outermost core. S3KS - S2KS and S4KS - S3KS differential travel times were measured using the cross-correlation method and compared to those from reflectivity synthetics created from core models of past studies. High quality recordings from a deep focus Java Sea event which sample the outer core beneath the northern Pacific, the Arctic, and northwestern North America (spanning 1/8th of the core's surface area), have SmKS wavepaths that traverse regions where lower mantle heterogeneity is pre- dieted small, and are well-modeled by the PREM core model, with possibly a small V_p decrease (1.5%) in the outermost 50 km of the core. Such a reduction implies chemical stratification in this 50 km zone, though this model feature is not uniquely resolved. Data having wave paths through areas of known D" heterogeneity (±2% and greater), such as the source-side of SmKS lower mantle paths from Fiji-Tonga to Eurasia and Africa, exhibit systematic SmKS differential time anomalies of up to several seconds. 2-D wave propagation experiments demonstrate how large scale lower mantle velocity perturbations can explain long wavelength behavior of such anomalous SmKS times. When improperly accounted for, lower mantle heterogeneity maps directly into core structure. Raypaths departing from homogeneity play an important role in producing SmKS anomalies. The existence of outermost core heterogeneity is difficult to resolve at present due to uncertainties in global lower mantle structure. Resolving a one-dimensional chemically stratified outermost core also remains difficult due to the same uncertainties. Restricting study to higher multiples of SmKS (m=2,3,4) can help reduce the affect of mantle heterogeneity due to the closeness of the mantle legs of the wavepaths. SmKS waves are ideal in providing additional information on the details of lower mantle heterogeneity.
Resumo:
Sedimentary rocks on Mars provide insight into past aqueous and atmospheric processes, climate regimes, and potential habitability. The stratigraphic architecture of sedimentary rocks on Mars is similar to that of Earth, indicating that the processes that govern deposition and erosion on Mars can be reasonably inferred through reference to analogous terrestrial systems. This dissertation aims to understand Martian surface processes through the use of (1) ground-based observations from the Mars Exploration Rovers, (2) orbital data from the High Resolution Imaging Science Experiment onboard the Mars Reconnaissance Orbiter, and (3) the use of terrestrial field analogs to understand bedforms and sediment transport on Mars. Chapters 1 and 2 trace the history of aqueous activity at Meridiani Planum, through the reconstruction of eolian bedforms at Victoria crater, and the identification of a potential mudstone facies at Santa Maria crater. Chapter 3 uses Terrestrial Laser Scanning to study cross-bedding in pyroclastic surge deposits on Earth in order to understand sediment transport in these events and to establish criteria for their identification on Mars. The final chapter analyzes stratal geometries in the Martian North Polar Layered Deposits using tools for sequence stratigraphic analysis, to better constrain past surface processes and past climate conditions on Mars.
Resumo:
Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.
Resumo:
A central objective in signal processing is to infer meaningful information from a set of measurements or data. While most signal models have an overdetermined structure (the number of unknowns less than the number of equations), traditionally very few statistical estimation problems have considered a data model which is underdetermined (number of unknowns more than the number of equations). However, in recent times, an explosion of theoretical and computational methods have been developed primarily to study underdetermined systems by imposing sparsity on the unknown variables. This is motivated by the observation that inspite of the huge volume of data that arises in sensor networks, genomics, imaging, particle physics, web search etc., their information content is often much smaller compared to the number of raw measurements. This has given rise to the possibility of reducing the number of measurements by down sampling the data, which automatically gives rise to underdetermined systems.
In this thesis, we provide new directions for estimation in an underdetermined system, both for a class of parameter estimation problems and also for the problem of sparse recovery in compressive sensing. There are two main contributions of the thesis: design of new sampling and statistical estimation algorithms for array processing, and development of improved guarantees for sparse reconstruction by introducing a statistical framework to the recovery problem.
We consider underdetermined observation models in array processing where the number of unknown sources simultaneously received by the array can be considerably larger than the number of physical sensors. We study new sparse spatial sampling schemes (array geometries) as well as propose new recovery algorithms that can exploit priors on the unknown signals and unambiguously identify all the sources. The proposed sampling structure is generic enough to be extended to multiple dimensions as well as to exploit different kinds of priors in the model such as correlation, higher order moments, etc.
Recognizing the role of correlation priors and suitable sampling schemes for underdetermined estimation in array processing, we introduce a correlation aware framework for recovering sparse support in compressive sensing. We show that it is possible to strictly increase the size of the recoverable sparse support using this framework provided the measurement matrix is suitably designed. The proposed nested and coprime arrays are shown to be appropriate candidates in this regard. We also provide new guarantees for convex and greedy formulations of the support recovery problem and demonstrate that it is possible to strictly improve upon existing guarantees.
This new paradigm of underdetermined estimation that explicitly establishes the fundamental interplay between sampling, statistical priors and the underlying sparsity, leads to exciting future research directions in a variety of application areas, and also gives rise to new questions that can lead to stand-alone theoretical results in their own right.
Resumo:
Chapter 1
Cyclobutanediyl has been studied in both its singlet and triplet states by ab initio electronic structure theory. The triplet, which is the ground state of the molecule, exists in both C_(2h) and C_(2v) forms, which interconvert via a C_s transition state. For the singlet, only a C_(2h) form is found. It passes, via a C_s transition state, onto the C_(2v) surface on which bicyclobutane is the only minimum. The ring-flipping (inversion) process in bicyclobutane includes the singlet biradical as an intermediate, and involves a novel, nonleast motion pathway. Semiclassical periodic orbit theory indicates that the various minima on both the singlet and triplet surfaces can interconvert via quantum mechanical tunneling.
Chapter 2
The dimethylenepolycyclobutadienes (n) are the non-Kekulé analogues of the classical acenes. Application of a variety of theoretical methods reveals several novel features of such structures. Most interesting is the emergence of a parity rule. When n is even, n is predicted to be a singlet, with n disjoint NBMOs. When n is odd, theory predicts a triplet ground state with (n+1) NBMOs that are not fully disjoint.
Chapter 3
Bi(cyclobutadienyl) (2), the cyclobutadiene analogue of biphenyl, and its homologues tri- (3) and tetra(cyclobutadienyl) (4) have been studied using electronic structure theory. Ab initio calculations on 2 reveal that the central bond is a true double bond, and that the structure is best thought of as two allyl radicals plus an ethylene. The singlet and triplet states are essentially degenerate. Trimer 3 is two allyls plus a dimethylenecyclobutanediyl, while 4 is two coplanar bi(cyclobutadienyl) units connected by a single bond. For both 3 and 4, the quintet, triplet, and singlet states are essentially degenerate, indicating that they are tetraradicals. The infinite polymer, polycyclobutadiene, has been studied by HMO, EHCO, and VEH methods. Several geometries based on the structures of 3 and 4 have been studied, and the band structures are quite intriguing. A novel crossing between the valence and conduction bands produces a small band gap and a high density of states at the Fermi level.
Chapter 4
At the level of Hückel theory, polyfulvene has a HOCO-LUCO degeneracy much like that seen in polyacetylene. Higher levels of theory remove the degeneracy, but the band gap (E_g) is predicted to be significantly smaller than analogous structures such as polythiophene and polypyrrole at the fulvenoid geometry. An alternative geometry, which we have termed quinoid, is also conceivable for polyfulvene, and it is predicted to have a much larger E_g. The effects of benzannelation to produce analogues of polyisothianaphthene have been evaluated. We propose a new model for such structures based on conventional orbital mixing arguments. Several of the proposed structures have quite interesting properties, which suggest that they are excellent candidates for conducting polymers.
Chapter 5
Theoretical studies of polydimethylenecyclobutene and polydiisopropylidene- cyclobutene reveal that, because of steric crowding, they cannot achieve a planar, fully conjugated structure in either their undoped or doped states. Rather, the structure consists of essentially orthogonal hexatriene units. Such a structure is incompatible with conventional conduction mechanisms involving polarons and bipolarons.
Resumo:
Studies in turbulence often focus on two flow conditions, both of which occur frequently in real-world flows and are sought-after for their value in advancing turbulence theory. These are the high Reynolds number regime and the effect of wall surface roughness. In this dissertation, a Large-Eddy Simulation (LES) recreates both conditions over a wide range of Reynolds numbers Reτ = O(102)-O(108) and accounts for roughness by locally modeling the statistical effects of near-wall anisotropic fine scales in a thin layer immediately above the rough surface. A subgrid, roughness-corrected wall model is introduced to dynamically transmit this modeled information from the wall to the outer LES, which uses a stretched-vortex subgrid-scale model operating in the bulk of the flow. Of primary interest is the Reynolds number and roughness dependence of these flows in terms of first and second order statistics. The LES is first applied to a fully turbulent uniformly-smooth/rough channel flow to capture the flow dynamics over smooth, transitionally rough and fully rough regimes. Results include a Moody-like diagram for the wall averaged friction factor, believed to be the first of its kind obtained from LES. Confirmation is found for experimentally observed logarithmic behavior in the normalized stream-wise turbulent intensities. Tight logarithmic collapse, scaled on the wall friction velocity, is found for smooth-wall flows when Reτ ≥ O(106) and in fully rough cases. Since the wall model operates locally and dynamically, the framework is used to investigate non-uniform roughness distribution cases in a channel, where the flow adjustments to sudden surface changes are investigated. Recovery of mean quantities and turbulent statistics after transitions are discussed qualitatively and quantitatively at various roughness and Reynolds number levels. The internal boundary layer, which is defined as the border between the flow affected by the new surface condition and the unaffected part, is computed, and a collapse of the profiles on a length scale containing the logarithm of friction Reynolds number is presented. Finally, we turn to the possibility of expanding the present framework to accommodate more general geometries. As a first step, the whole LES framework is modified for use in the curvilinear geometry of a fully-developed turbulent pipe flow, with implementation carried out in a spectral element solver capable of handling complex wall profiles. The friction factors have shown favorable agreement with the superpipe data, and the LES estimates of the Karman constant and additive constant of the log-law closely match values obtained from experiment.
Resumo:
Spectroscopic investigations of hydrogen-bonding and van der Waals' interactions m molecular clusters were studied by the techniques of infrared predissociation and resonance-enhanced multiphoton ionization spectroscopies (REMPI). Ab initio calculations were applied in conjunction for data interpretation.
The infrared predissociation spectroscopy of CN^-•(H_2O)_n (n = 2 - 6) clusters was reported in the region of 2950 - 3850 cm^(-1). The hydrogen bondings for the C-site and N-site binding, and among the water molecules were identified for n = 2 to 4. A spectral transition was observed for n = 5 and 6, implying that the anion was surface-bound onto the water aggregates in larger clusters.
The infrared predissociation spectroscopy of Br^-•(NH_3) and I^-•(NH_3)_n (n =1-3) clusters was reported in the region of 3050-3450 cm^(-1). For the Br^-•(NH_3) complex, a dominating ionic NH stretch appeared at 3175 cm^(-1), and the weaker free NH stretch appeared at 3348 cm^(-1). The observed spectrum was consistent to the structure in which there was one nearly linear hydrogen bond between Br^- and the NH_3 moiety. For the I^- •(NH_3) complex, five distinct IR absorption bands were observed in the spectrum. The spectrum was not consistent with basic frequency patterns of three geometries considered in the ab initio calculations - complex with one, two and three hydrogen bondings between I^- and the NH_3 moiety. Substantial inhomogenous broadening were displayed in the spectra for I^-•(NH_3)_n (n =2-3), suggesting the presence of multiple isomers.
The REMPI spectroscopy of the bound 4p ^2П 1/2 and ^2П 3/2 states, and the dissociative 3d ^2Σ^+ 1/2 state in the Al•Ar complex was reported. The dissociative spectrum at Al^+ channel suggested the coupling of the 4p ^2П 1/2,3/2 states to the repulsive 3d ^2Σ^+ 1/2 state. The spin-electronic coupling was further manifested in the dissociative Al^+ spectrum of the 3d ^2Σ^+ 1/2 state. Using the potential energy curves obtained from ab initio calculations, a bound → continuum Franck-Condon-intensity simulation was performed and compared with the one-photon 3d ^2Σ^+ 1/2 profile. The agreement provided evidence for the petturbation above the Al(3d)Ar dissociation limit, and the repulsive character of the 3d ^2Σ^+ 1/2 state.
Resumo:
On the basis of noncollinear optical parametric amplification in periodically poled lithium niobate (PPLN) which is realized by quasi-phase matching (QPM) technology, we consider the possibility of semi-noncollinear phase matching between collinear and noncollinear geometries by tilting a PPLN-crystal's parallel grating at a sure angle. Numerical simulation with proper parameters shows that we can achieve a broader optical parametric amplification (OPA) bandwidth than that of noncollinear geometry. About 121 nm at a signal wavelength of 800 and 70 nm at a signal wavelength of 1064 nm under optimal conditions are obtained when the crystal length is 9 mm.
Resumo:
The concept of a carbon nanotube microneedle array is explored in this thesis from multiple perspectives including microneedle fabrication, physical aspects of transdermal delivery, and in vivo transdermal drug delivery experiments. Starting with standard techniques in carbon nanotube (CNT) fabrication, including catalyst patterning and chemical vapor deposition, vertically-aligned carbon nanotubes are utilized as a scaffold to define the shape of the hollow microneedle. Passive, scalable techniques based on capillary action and unique photolithographic methods are utilized to produce a CNT-polymer composite microneedle. Specific examples of CNT-polyimide and CNT-epoxy microneedles are investigated. Further analysis of the transport properties of polymer resins reveals general requirements for applying arbitrary polymers to the fabrication process.
The bottom-up fabrication approach embodied by vertically-aligned carbon nanotubes allows for more direct construction of complex high-aspect ratio features than standard top-down fabrication approaches, making microneedles an ideal application for CNTs. However, current vertically-aligned CNT fabrication techniques only allow for the production of extruded geometries with a constant cross-sectional area, such as cylinders. To rectify this limitation, isotropic oxygen etching is introduced as a novel fabrication technique to create true 3D CNT geometry. Oxygen etching is utilized to create a conical geometry from a cylindrical CNT structure as well as create complex shape transformations in other CNT geometries.
CNT-polymer composite microneedles are anchored onto a common polymer base less than 50 µm thick, which allows for the microneedles to be incorporated into multiple drug delivery platforms, including modified hypodermic syringes and silicone skin patches. Cylindrical microneedles are fabricated with 100 µm outer diameter and height of 200-250 µm with a central cavity, or lumen, diameter of 30 µm to facilitate liquid drug flow. In vitro delivery experiments in swine skin demonstrate the ability of the microneedles to successfully penetrate the skin and deliver aqueous solutions.
An in vivo study was performed to assess the ability of the CNT-polymer microneedles to deliver drugs transdermally. CNT-polymer microneedles are attached to a hand actuated silicone skin patch that holds a liquid reservoir of drugs. Fentanyl, a potent analgesic, was administered to New Zealand White Rabbits through 3 routes of delivery: topical patch, CNT-polymer microneedles, and subcutaneous hypodermic injection. Results demonstrate that the CNT-polymer microneedles have a similar onset of action as the topical patch. CNT-polymer microneedles were also vetted as a painless delivery approach compared to hypodermic injection. Comparative analysis with contemporary microneedle designs demonstrates that the delivery achieved through CNT-polymer microneedles is akin to current hollow microneedle architectures. The inherent advantage of applying a bottom-up fabrication approach alongside similar delivery performance to contemporary microneedle designs demonstrates that the CNT-polymer composite microneedle is a viable architecture in the emerging field of painless transdermal delivery.
Resumo:
The fibrous and cleavage tensile fracture of an annealed mild steel was investigated. Round tensile specimens of two geometries, one straight and one with a circumferential notch, were pulled at temperatures between room temperature and liquid nitrogen temperature. Tensile fractures occurred at average strains from 0.02 to 0.87. The mechanism of fibrous fracture at room temperature was investigated metallographically. The stress-strain values at which fibrous and cleavage fractures are initiated were determined.
Many fine microcracks, which are associated with pearlite colonies and inclusion stringers, develop prior to fibrous fracture. The macrofracture, which leads to final separation of the tensile specimen, is initiated by the propagation of a microcrack beyond the microstructural feature with which it is associated. Thus, the fibrous fracture of mild steel does not develop by the gradual growth and coalescence of voids that are large enough to be visible in the optical microscope. When the microcracks begin to open and propagate, final fracture quickly follows. Axial cracks are a prominent feature of the macrofracture that forms in the interior of the specimen immediately before final fracture.
The Bridgman distribution of stresses is not valid in a notched tensile specimen. Fibrous and cleavage fractures occur at approximately the same value of maximum tensile stress. When the maximum tensile stress that is necessary for cleavage fracture is plotted against the corresponding maximum tensile strain, the result is an unique locus.
Resumo:
To obtain accurate information from a structural tool it is necessary to have an understanding of the physical principles which govern the interaction between the probe and the sample under investigation. In this thesis a detailed study of the physical basis for Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy is presented. A single scattering formalism of EXAFS is introduced which allows a rigorous treatment of the central atom potential. A final state interaction formalism of EXAFS is also discussed. Multiple scattering processes are shown to be significant for systems of certain geometries. The standard single scattering EXAFS analysis produces erroneous results if the data contain a large multiple scattering contribution. The effect of thermal vibrations on such multiple scattering paths is also discussed. From symmetry considerations it is shown that only certain normal modes contribute to the Debye-Waller factor for a particular scattering path. Furthermore, changes in the scattering angles induced by thermal vibrations produces additional EXAFS components called modification factors. These factors are shown to be small for most systems.
A study of the physical basis for the determination of structural information from EXAFS data is also presented. An objective method of determining the background absorption and the threshold energy is discussed and involves Gaussian functions. In addition, a scheme to determine the nature of the scattering atom in EXAFS experiments is introduced. This scheme is based on the fact that the phase intercept is a measure of the type of scattering atom. A method to determine bond distances is also discussed and does not require the use of model compounds or calculated phase shifts. The physical basis for this method is the absence of a linear term in the scattering phases. Therefore, it is possible to separate these phases from the linear term containing the distance information in the total phase.
Resumo:
Over the last several decades there have been significant advances in the study and understanding of light behavior in nanoscale geometries. Entire fields such as those based on photonic crystals, plasmonics and metamaterials have been developed, accelerating the growth of knowledge related to nanoscale light manipulation. Coupled with recent interest in cheap, reliable renewable energy, a new field has blossomed, that of nanophotonic solar cells.
In this thesis, we examine important properties of thin-film solar cells from a nanophotonics perspective. We identify key differences between nanophotonic devices and traditional, thick solar cells. We propose a new way of understanding and describing limits to light trapping and show that certain nanophotonic solar cell designs can have light trapping limits above the so called ray-optic or ergodic limit. We propose that a necessary requisite to exceed the traditional light trapping limit is that the active region of the solar cell must possess a local density of optical states (LDOS) higher than that of the corresponding, bulk material. Additionally, we show that in addition to having an increased density of states, the absorber must have an appropriate incoupling mechanism to transfer light from free space into the optical modes of the device. We outline a portfolio of new solar cell designs that have potential to exceed the traditional light trapping limit and numerically validate our predictions for select cases.
We emphasize the importance of thinking about light trapping in terms of maximizing the optical modes of the device and efficiently coupling light into them from free space. To further explore these two concepts, we optimize patterns of superlattices of air holes in thin slabs of Si and show that by adding a roughened incoupling layer the total absorbed current can be increased synergistically. We suggest that the addition of a random scattering surface to a periodic patterning can increase incoupling by lifting the constraint of selective mode occupation associated with periodic systems.
Lastly, through experiment and simulation, we investigate a potential high efficiency solar cell architecture that can be improved with the nanophotonic light trapping concepts described in this thesis. Optically thin GaAs solar cells are prepared by the epitaxial liftoff process by removal from their growth substrate and addition of a metallic back reflector. A process of depositing large area nano patterns on the surface of the cells is developed using nano imprint lithography and implemented on the thin GaAs cells.
Resumo:
This dissertation is concerned with the development of a new discrete element method (DEM) based on Non-Uniform Rational Basis Splines (NURBS). With NURBS, the new DEM is able to capture sphericity and angularity, the two particle morphological measures used in characterizing real grain geometries. By taking advantage of the parametric nature of NURBS, the Lipschitzian dividing rectangle (DIRECT) global optimization procedure is employed as a solution procedure to the closest-point projection problem, which enables the contact treatment of non-convex particles. A contact dynamics (CD) approach to the NURBS-based discrete method is also formulated. By combining particle shape flexibility, properties of implicit time-integration, and non-penetrating constraints, we target applications in which the classical DEM either performs poorly or simply fails, i.e., in granular systems composed of rigid or highly stiff angular particles and subjected to quasistatic or dynamic flow conditions. The CD implementation is made simple by adopting a variational framework, which enables the resulting discrete problem to be readily solved using off-the-shelf mathematical programming solvers. The capabilities of the NURBS-based DEM are demonstrated through 2D numerical examples that highlight the effects of particle morphology on the macroscopic response of granular assemblies under quasistatic and dynamic flow conditions, and a 3D characterization of material response in the shear band of a real triaxial specimen.
Resumo:
Electronic structures and dynamics are the key to linking the material composition and structure to functionality and performance.
An essential issue in developing semiconductor devices for photovoltaics is to design materials with optimal band gaps and relative positioning of band levels. Approximate DFT methods have been justified to predict band gaps from KS/GKS eigenvalues, but the accuracy is decisively dependent on the choice of XC functionals. We show here for CuInSe2 and CuGaSe2, the parent compounds of the promising CIGS solar cells, conventional LDA and GGA obtain gaps of 0.0-0.01 and 0.02-0.24 eV (versus experimental values of 1.04 and 1.67 eV), while the historically first global hybrid functional, B3PW91, is surprisingly the best, with band gaps of 1.07 and 1.58 eV. Furthermore, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with a MAD of only 0.09 eV, which is substantially better than all modern hybrid functionals, including B3LYP (MAD of 0.19 eV) and screened hybrid functional HSE06 (MAD of 0.18 eV).
The laboratory performance of CIGS solar cells (> 20% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use the B3PW91 hybrid functional of DFT with the AEP method that we validate to provide very accurate descriptions of both band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the CBO of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the VBO, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly.
A number of exotic structures have been formed through high pressure chemistry, but applications have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e., one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a 1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03-0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a new type of conducting polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions.
Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational chemistry and materials science, and the eFF method presents a cost-efficient alternative. However, due to the deficiency of FSG representation, eFF is limited to low-Z elements with electrons of predominant s-character. To overcome this, we introduce a formal set of ECP extensions that enable accurate description of p-block elements. The extensions consist of a model representing the core electrons with the nucleus as a single pseudo particle represented by FSG, interacting with valence electrons through ECPs. We demonstrate and validate the ECP extensions for complex bonding structures, geometries, and energetics of systems with p-block character (C, O, Al, Si) and apply them to study materials under extreme mechanical loading conditions.
Despite its success, the eFF framework has some limitations, originated from both the design of Pauli potentials and the FSG representation. To overcome these, we develop a new framework of two-level hierarchy that is a more rigorous and accurate successor to the eFF method. The fundamental level, GHA-QM, is based on a new set of Pauli potentials that renders exact QM level of accuracy for any FSG represented electron systems. To achieve this, we start with using exactly derived energy expressions for the same spin electron pair, and fitting a simple functional form, inspired by DFT, against open singlet electron pair curves (H2 systems). Symmetric and asymmetric scaling factors are then introduced at this level to recover the QM total energies of multiple electron pair systems from the sum of local interactions. To complement the imperfect FSG representation, the AMPERE extension is implemented, and aims at embedding the interactions associated with both the cusp condition and explicit nodal structures. The whole GHA-QM+AMPERE framework is tested on H element, and the preliminary results are promising.
Resumo:
In Part I, we construct a symmetric stress-energy-momentum pseudo-tensor for the gravitational fields of Brans-Dicke theory, and use this to establish rigorously conserved integral expressions for energy-momentum Pi and angular momentum Jik. Application of the two-dimensional surface integrals to the exact static spherical vacuum solution of Brans leads to an identification of our conserved mass with the active gravitational mass. Application to the distant fields of an arbitrary stationary source reveals that Pi and Jik have the same physical interpretation as in general relativity. For gravitational waves whose wavelength is small on the scale of the background radius of curvature, averaging over several wavelengths in the Brill-Hartle-Isaacson manner produces a stress-energy-momentum tensor for gravitational radiation which may be used to calculate the changes in Pi and Jik of their source.
In Part II, we develop strong evidence in favor of a conjecture by Penrose--that, in the Brans-Dicke theory, relativistic gravitational collapse in three dimensions produce black holes identical to those of general relativity. After pointing out that any black hole solution of general relativity also satisfies Brans-Dicke theory, we establish the Schwarzschild and Kerr geometries as the only possible spherical and axially symmetric black hole exteriors, respectively. Also, we show that a Schwarzschild geometry is necessarily formed in the collapse of an uncharged sphere.
Appendices discuss relationships among relativistic gravity theories and an example of a theory in which black holes do not exist.