806 resultados para fractal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

应用小波变换对Kiesswetter工线和3种方法生成的分数维布朗运动(FBm)进行了分析,验证了该方法计算分形维数具有较高的精度。在宽广的分形维数范围内,与其他7种计算方法比较表明,小波变换方法的精确性和一致性都最好。小波变换为进一步分辨确定性信号、分形特征的信号或完全随机性的信号提供了一种有效工具,为评价精糙表面形貌的分形特征提供了前提条件。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

19 p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The learning of probability distributions from data is a ubiquitous problem in the fields of Statistics and Artificial Intelligence. During the last decades several learning algorithms have been proposed to learn probability distributions based on decomposable models due to their advantageous theoretical properties. Some of these algorithms can be used to search for a maximum likelihood decomposable model with a given maximum clique size, k, which controls the complexity of the model. Unfortunately, the problem of learning a maximum likelihood decomposable model given a maximum clique size is NP-hard for k > 2. In this work, we propose a family of algorithms which approximates this problem with a computational complexity of O(k · n^2 log n) in the worst case, where n is the number of implied random variables. The structures of the decomposable models that solve the maximum likelihood problem are called maximal k-order decomposable graphs. Our proposals, called fractal trees, construct a sequence of maximal i-order decomposable graphs, for i = 2, ..., k, in k − 1 steps. At each step, the algorithms follow a divide-and-conquer strategy based on the particular features of this type of structures. Additionally, we propose a prune-and-graft procedure which transforms a maximal k-order decomposable graph into another one, increasing its likelihood. We have implemented two particular fractal tree algorithms called parallel fractal tree and sequential fractal tree. These algorithms can be considered a natural extension of Chow and Liu’s algorithm, from k = 2 to arbitrary values of k. Both algorithms have been compared against other efficient approaches in artificial and real domains, and they have shown a competitive behavior to deal with the maximum likelihood problem. Due to their low computational complexity they are especially recommended to deal with high dimensional domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

提出采用分形理论对泡沫金属的细现结构及尺寸效应进行研究的方法.针对一系列具有不同相对密度和细观结构的泡沫铝,证明了其细观结构在一定尺度内符合分形特征,比较了小岛分维、计盒分维和信息分维等算法对泡沫金属分形表征的适用性,分析了细观结构特征对分维的影响.结合推广的sierpinski垫片模型研究了泡沫铝的屈服强度与分维的联系,建立了泡沫铝屈服强度的尺寸效应模型.研究结果表明,由于引入了表征细现结构特征的分形维数,该模型除能表征屈服强度随试样尺寸的变化规律外,还在一定程度上直接反映了泡沫金属细观结构特征对力学性能的影响.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在包含时间进程的光波大气传输及其自适应光学相位校正的数值模拟研究中,如长曝光成像和自适应光学系统的动态控制过程,矩形湍流相屏的产生和应用尤为重要.而现在通常使用的功率谱反演法产生的是正方形的湍流相屏,只采用其中的矩形部分显然造成计算机资源的浪费;并且谱反演法产生的湍流相屏需要进行低频补偿,从而明显地增加计算量.基于大气湍流所造成的畸变相位波前的分形特征,提出了一种产生矩形湍流相屏的新方法,并与解析理论结果进行对比,验证了这种矩形相屏产生方法的正确性.与已有的方法相比,此算法具有两个明显的优点:算法简单、计算效率高,节省计算机资源;与大气湍流介质统计特性无论在高频部分还是在低频部分均符合得较好.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. We also put forth a physical argument that identifies the intrinsic length and suggests a linear growth of the nonlocal energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, i.e., it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity play as contributors to the specific fracture energy of the material. Next, we present an experimental assessment of the optimal scaling laws. We show that when the specific fracture energy is renormalized in a manner suggested by the optimal scaling laws, the data falls within the bounds predicted by the analysis and, moreover, they ostensibly collapse---with allowances made for experimental scatter---on a master curve dependent on the hardening exponent, but otherwise material independent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work seeks to understand past and present surface conditions on the Moon using two different but complementary approaches: topographic analysis using high-resolution elevation data from recent spacecraft missions and forward modeling of the dominant agent of lunar surface modification, impact cratering. The first investigation focuses on global surface roughness of the Moon, using a variety of statistical parameters to explore slopes at different scales and their relation to competing geological processes. We find that highlands topography behaves as a nearly self-similar fractal system on scales of order 100 meters, and there is a distinct change in this behavior above and below approximately 1 km. Chapter 2 focuses this analysis on two localized regions: the lunar south pole, including Shackleton crater, and the large mare-filled basins on the nearside of the Moon. In particular, we find that differential slope, a statistical measure of roughness related to the curvature of a topographic profile, is extremely useful in distinguishing between geologic units. Chapter 3 introduces a numerical model that simulates a cratered terrain by emplacing features of characteristic shape geometrically, allowing for tracking of both the topography and surviving rim fragments over time. The power spectral density of cratered terrains is estimated numerically from model results and benchmarked against a 1-dimensional analytic model. The power spectral slope is observed to vary predictably with the size-frequency distribution of craters, as well as the crater shape. The final chapter employs the rim-tracking feature of the cratered terrain model to analyze the evolving size-frequency distribution of craters under different criteria for identifying "visible" craters from surviving rim fragments. A geometric bias exists that systematically over counts large or small craters, depending on the rim fraction required to count a given feature as either visible or erased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new formulation derived from thermal characters of inclusions and host films for estimating laser induced damage threshold has been deduced. This formulation is applicable for dielectric films when they are irradiated by laser beam with pulse width longer than tens picoseconds. This formulation can interpret the relationship between pulse-width and damage threshold energy density of laser pulse obtained experimentally. Using this formulation, we can analyze which kind of inclusion is the most harmful inclusion. Combining it with fractal distribution of inclusions, we have obtained an equation which describes relationship between number density of inclusions and damage probability. Using this equation, according to damage probability and corresponding laser energy density, we can evaluate the number density and distribution in size dimension of the most harmful inclusions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In (2 + 1) dimension, growth process of thin film on non-planar substrate in Kuramoto-Sivashinsky model is studied with numerical simulation approach. 15 x 15 semi-ellipsoids arranged orderly on the surface of substrate are used to represent initial rough surface. The results show that at the initial stage of growth process, the surface morphology of thin film appears to be grid-structure, and the interface width constantly decreases with the growth time, then reaches minimum. However, the grid-structure becomes ambiguous, and granules of different sizes distribute evenly on the surface of thin film with the increase of growth time. Thereafter, the average size of granules and the interface width gradually increase, and the surface morphology of thin film presents fractal properties. The numerical results of height-height correlation functions of thin film verify the surface morphology of thin film to be fractal for a longer growth time. By fitting of the height-height correlation functions of thin film with different growth times, the growth process is described quantitatively. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

用离子束溅射法制备了锆单层薄膜.用设计新型夹具和预置种子方法,对薄膜中结瘤微缺陷的生长过程进行了研究.在高分辨率光学显微镜和扫描电子显微镜下观察发现,结瘤在其生长初期呈现出分形的特征.用分子动力学和薄膜生长的扩散限制聚集模型,薄膜中结瘤微缺陷成核时的分形现象得到了很好的解释.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

薄膜中总会存在一些杂质或者缺陷,杂质和缺陷密度的有限性导致了薄膜破坏的概率性。提出了不同尺寸杂质和缺陷分布的分形特征,分析了薄膜破坏概率与辐照激光功率密度的关系,计算结果与实验结果吻合得很好。得到了一种确定薄膜中最具危害性杂质的热学特性及分布密度的方法。同时提出了杂质的敏感尺寸范围(SSR)的概念,由此得到材料激光损伤阈值的新的确定表达式,该表达式反映的损伤阈值与激光脉宽的关系更加符合实验结果。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desde a descoberta do estado quasicristalino por Daniel Shechtman et al. em 1984 e da fabricação por Roberto Merlin et al. de uma superrede artificial de GaAs/ AlAs em 1985 com características da sequência de Fibonacci, um grande número de trabalhos teóricos e experimentais tem relatado uma variedade de propriedades interessantes no comportamento de sistemas aperiódicos. Do ponto de vista teórico, é bem sabido que a cadeia de Fibonacci em uma dimensão se constitui em um protótipo de sucesso para a descrição do estado quasicristalino de um sólido. Dependendo da regra de inflação, diferentes tipos de estruturas aperiódicas podem ser obtidas. Esta diversidade originou as chamadas regras metálicas e devido à possibilidade de tratamento analítico rigoroso este modelo tem sido amplamente estudado. Neste trabalho, propriedades de localização em uma dimensão são analisadas considerando-se um conjunto de regras metálicas e o modelo de ligações fortes de banda única. Considerando-se o Hamiltoniano de ligações fortes com um orbital por sítio obtemos um conjunto de transformações relativas aos parâmetros de dizimação, o que nos permitiu calcular as densidades de estados (DOS) para todas as configurações estudadas. O estudo detalhado da densidade de estados integrada (IDOS) para estes casos, mostra o surgimento de plateaux na curva do número de ocupação explicitando o aparecimento da chamada escada do diabo" e também o caráter fractal destas estruturas. Estudando o comportamento da variação da energia em função da variação da energia de hopping, construímos padrões do tipo borboletas de Hofstadter, que simulam o efeito de um campo magnético atuando sobre o sistema. A natureza eletrônica dos auto estados é analisada a partir do expoente de Lyapunov (γ), que está relacionado com a evolução da função de onda eletrônica ao longo da cadeia unidimensional. O expoente de Lyapunov está relacionado com o inverso do comprimento de localização (ξ= 1 /γ), sendo nulo para os estados estendidos e positivo para estados localizados. Isto define claramente as posições dos principais gaps de energia do sistema. Desta forma, foi possível analisar o comportamento autossimilar de cadeias com diferentes regras de formação. Analisando-se o espectro de energia em função do número de geração de cadeias que seguem as regras de ouro e prata foi feito, obtemos conjuntos do tipo-Cantor, que nos permitiu estudar o perfil do calor específico de uma cadeia e Fibonacci unidimensional para diversas gerações