942 resultados para equilibrium asset pricing models with latent variables


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’un des problèmes importants en apprentissage automatique est de déterminer la complexité du modèle à apprendre. Une trop grande complexité mène au surapprentissage, ce qui correspond à trouver des structures qui n’existent pas réellement dans les données, tandis qu’une trop faible complexité mène au sous-apprentissage, c’est-à-dire que l’expressivité du modèle est insuffisante pour capturer l’ensemble des structures présentes dans les données. Pour certains modèles probabilistes, la complexité du modèle se traduit par l’introduction d’une ou plusieurs variables cachées dont le rôle est d’expliquer le processus génératif des données. Il existe diverses approches permettant d’identifier le nombre approprié de variables cachées d’un modèle. Cette thèse s’intéresse aux méthodes Bayésiennes nonparamétriques permettant de déterminer le nombre de variables cachées à utiliser ainsi que leur dimensionnalité. La popularisation des statistiques Bayésiennes nonparamétriques au sein de la communauté de l’apprentissage automatique est assez récente. Leur principal attrait vient du fait qu’elles offrent des modèles hautement flexibles et dont la complexité s’ajuste proportionnellement à la quantité de données disponibles. Au cours des dernières années, la recherche sur les méthodes d’apprentissage Bayésiennes nonparamétriques a porté sur trois aspects principaux : la construction de nouveaux modèles, le développement d’algorithmes d’inférence et les applications. Cette thèse présente nos contributions à ces trois sujets de recherches dans le contexte d’apprentissage de modèles à variables cachées. Dans un premier temps, nous introduisons le Pitman-Yor process mixture of Gaussians, un modèle permettant l’apprentissage de mélanges infinis de Gaussiennes. Nous présentons aussi un algorithme d’inférence permettant de découvrir les composantes cachées du modèle que nous évaluons sur deux applications concrètes de robotique. Nos résultats démontrent que l’approche proposée surpasse en performance et en flexibilité les approches classiques d’apprentissage. Dans un deuxième temps, nous proposons l’extended cascading Indian buffet process, un modèle servant de distribution de probabilité a priori sur l’espace des graphes dirigés acycliques. Dans le contexte de réseaux Bayésien, ce prior permet d’identifier à la fois la présence de variables cachées et la structure du réseau parmi celles-ci. Un algorithme d’inférence Monte Carlo par chaîne de Markov est utilisé pour l’évaluation sur des problèmes d’identification de structures et d’estimation de densités. Dans un dernier temps, nous proposons le Indian chefs process, un modèle plus général que l’extended cascading Indian buffet process servant à l’apprentissage de graphes et d’ordres. L’avantage du nouveau modèle est qu’il admet les connections entres les variables observables et qu’il prend en compte l’ordre des variables. Nous présentons un algorithme d’inférence Monte Carlo par chaîne de Markov avec saut réversible permettant l’apprentissage conjoint de graphes et d’ordres. L’évaluation est faite sur des problèmes d’estimations de densité et de test d’indépendance. Ce modèle est le premier modèle Bayésien nonparamétrique permettant d’apprendre des réseaux Bayésiens disposant d’une structure complètement arbitraire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on the problem of feature selection for clustering continues to develop. This is a challenging task, mainly due to the absence of class labels to guide the search for relevant features. Categorical feature selection for clustering has rarely been addressed in the literature, with most of the proposed approaches having focused on numerical data. In this work, we propose an approach to simultaneously cluster categorical data and select a subset of relevant features. Our approach is based on a modification of a finite mixture model (of multinomial distributions), where a set of latent variables indicate the relevance of each feature. To estimate the model parameters, we implement a variant of the expectation-maximization algorithm that simultaneously selects the subset of relevant features, using a minimum message length criterion. The proposed approach compares favourably with two baseline methods: a filter based on an entropy measure and a wrapper based on mutual information. The results obtained on synthetic data illustrate the ability of the proposed expectation-maximization method to recover ground truth. An application to real data, referred to official statistics, shows its usefulness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we attempt to give a theoretical underpinning to the well established empirical stylized fact that asset returns in general and the spot FOREX returns in particular display predictable volatility characteristics. Adopting Moore and Roche s habit persistence version of Lucas model we nd that both the innovation in the spot FOREX return and the FOREX return itself follow "ARCH" style processes. Using the impulse response functions (IRFs) we show that the baseline simulated FOREX series has "ARCH" properties in the quarterly frequency that match well the "ARCH" properties of the empirical monthly estimations in that when we scale the x-axis to synchronize the monthly and quarterly responses we find similar impulse responses to one unit shock in variance. The IRFs for the ARCH processes we estimate "look the same" with an approximately monotonic decreasing fashion. The Lucas two-country monetary model with habit can generate realistic conditional volatility in spot FOREX return.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Faced with the problem of pricing complex contingent claims, an investor seeks to make his valuations robust to model uncertainty. We construct a notion of a model- uncertainty-induced utility function and show that model uncertainty increases the investor's eff ective risk aversion. Using the model-uncertainty-induced utility function, we extend the \No Good Deals" methodology of Cochrane and Sa a-Requejo [2000] to compute lower and upper good deal bounds in the presence of model uncertainty. We illustrate the methodology using some numerical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swain corrects the chi-square overidentification test (i.e., likelihood ratio test of fit) for structural equation models whethr with or without latent variables. The chi-square statistic is asymptotically correct; however, it does not behave as expected in small samples and/or when the model is complex (cf. Herzog, Boomsma, & Reinecke, 2007). Thus, particularly in situations where the ratio of sample size (n) to the number of parameters estimated (p) is relatively small (i.e., the p to n ratio is large), the chi-square test will tend to overreject correctly specified models. To obtain a closer approximation to the distribution of the chi-square statistic, Swain (1975) developed a correction; this scaling factor, which converges to 1 asymptotically, is multiplied with the chi-square statistic. The correction better approximates the chi-square distribution resulting in more appropriate Type 1 reject error rates (see Herzog & Boomsma, 2009; Herzog, et al., 2007).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Identifying those areas suitable for recolonization by threatened species is essential to support efficient conservation policies. Habitat suitability models (HSM) predict species' potential distributions, but the quality of their predictions should be carefully assessed when the species-environment equilibrium assumption is violated.2. We studied the Eurasian otter Lutra lutra, whose numbers are recovering in southern Italy. To produce widely applicable results, we chose standard HSM procedures and looked for the models' capacities in predicting the suitability of a recolonization area. We used two fieldwork datasets: presence-only data, used in the Ecological Niche Factor Analyses (ENFA), and presence-absence data, used in a Generalized Linear Model (GLM). In addition to cross-validation, we independently evaluated the models with data from a recolonization event, providing presences on a previously unoccupied river.3. Three of the models successfully predicted the suitability of the recolonization area, but the GLM built with data before the recolonization disagreed with these predictions, missing the recolonized river's suitability and badly describing the otter's niche. Our results highlighted three points of relevance to modelling practices: (1) absences may prevent the models from correctly identifying areas suitable for a species spread; (2) the selection of variables may lead to randomness in the predictions; and (3) the Area Under Curve (AUC), a commonly used validation index, was not well suited to the evaluation of model quality, whereas the Boyce Index (CBI), based on presence data only, better highlighted the models' fit to the recolonization observations.4. For species with unstable spatial distributions, presence-only models may work better than presence-absence methods in making reliable predictions of suitable areas for expansion. An iterative modelling process, using new occurrences from each step of the species spread, may also help in progressively reducing errors.5. Synthesis and applications. Conservation plans depend on reliable models of the species' suitable habitats. In non-equilibrium situations, such as the case for threatened or invasive species, models could be affected negatively by the inclusion of absence data when predicting the areas of potential expansion. Presence-only methods will here provide a better basis for productive conservation management practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim To evaluate the effects of using distinct alternative sets of climatic predictor variables on the performance, spatial predictions and future projections of species distribution models (SDMs) for rare plants in an arid environment. . Location Atacama and Peruvian Deserts, South America (18º30'S - 31º30'S, 0 - 3 000 m) Methods We modelled the present and future potential distributions of 13 species of Heliotropium sect. Cochranea, a plant group with a centre of diversity in the Atacama Desert. We developed and applied a sequential procedure, starting from climate monthly variables, to derive six alternative sets of climatic predictor variables. We used them to fit models with eight modelling techniques within an ensemble forecasting framework, and derived climate change projections for each of them. We evaluated the effects of using these alternative sets of predictor variables on performance, spatial predictions and projections of SDMs using Generalised Linear Mixed Models (GLMM). Results The use of distinct sets of climatic predictor variables did not have a significant effect on overall metrics of model performance, but had significant effects on present and future spatial predictions. Main conclusion Using different sets of climatic predictors can yield the same model fits but different spatial predictions of current and future species distributions. This represents a new form of uncertainty in model-based estimates of extinction risk that may need to be better acknowledged and quantified in future SDM studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A trade-off between return and risk plays a central role in financial economics. The intertemporal capital asset pricing model (ICAPM) proposed by Merton (1973) provides a neoclassical theory for expected returns on risky assets. The model assumes that risk-averse investors (seeking to maximize their expected utility of lifetime consumption) demand compensation for bearing systematic market risk and the risk of unfavorable shifts in the investment opportunity set. Although the ICAPM postulates a positive relation between the conditional expected market return and its conditional variance, the empirical evidence on the sign of the risk-return trade-off is conflicting. In contrast, autocorrelation in stock returns is one of the most consistent and robust findings in empirical finance. While autocorrelation is often interpreted as a violation of market efficiency, it can also reflect factors such as market microstructure or time-varying risk premia. This doctoral thesis investigates a relation between the mixed risk-return trade-off results and autocorrelation in stock returns. The results suggest that, in the case of the US stock market, the relative contribution of the risk-return trade-off and autocorrelation in explaining the aggregate return fluctuates with volatility. This effect is then shown to be even more pronounced in the case of emerging stock markets. During high-volatility periods, expected returns can be described using rational (intertemporal) investors acting to maximize their expected utility. During lowvolatility periods, market-wide persistence in returns increases, leading to a failure of traditional equilibrium-model descriptions for expected returns. Consistent with this finding, traditional models yield conflicting evidence concerning the sign of the risk-return trade-off. The changing relevance of the risk-return trade-off and autocorrelation can be explained by heterogeneous agents or, more generally, by the inadequacy of the neoclassical view on asset pricing with unboundedly rational investors and perfect market efficiency. In the latter case, the empirical results imply that the neoclassical view is valid only under certain market conditions. This offers an economic explanation as to why it has been so difficult to detect a positive tradeoff between the conditional mean and variance of the aggregate stock return. The results highlight the importance, especially in the case of emerging stock markets, of noting both the risk-return trade-off and autocorrelation in applications that require estimates for expected returns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investments have always been considered as an essential backbone and so-called ‘locomotive’ for the competitive economies. However, in various countries, the state has been put under tight budget constraints for the investments in capital intensive projects. In response to this situation, the cooperation between public and private sector has grown based on public-private mechanism. The promotion of favorable arrangement for collaboration between public and private sectors for the provision of policies, services, and infrastructure in Russia can help to address the problems of dry ports development that neither municipalities nor the private sector can solve alone. Especially, the stimulation of public-private collaboration is significant under the exposure to externalities that affect the magnitude of the risks during all phases of project realization. In these circumstances, the risk in the projects also is becoming increasingly a part of joint research and risk management practice, which is viewed as a key approach, aiming to take active actions on existing global and specific factors of uncertainties. Meanwhile, a relatively little progress has been made on the inclusion of the resilience aspects into the planning process of a dry ports construction that would instruct the capacity planner, on how to mitigate the occurrence of disruptions that may lead to million dollars of losses due to the deviation of the future cash flows from the expected financial flows on the project. The current experience shows that the existing methodological base is developed fragmentary within separate steps of supply chain risk management (SCRM) processes: risk identification, risk evaluation, risk mitigation, risk monitoring and control phases. The lack of the systematic approach hinders the solution of the problem of risk management processes of dry port implementation. Therefore, management of various risks during the investments phases of dry port projects still presents a considerable challenge from the practical and theoretical points of view. In this regard, the given research became a logical continuation of fundamental research, existing in the financial models and theories (e.g., capital asset pricing model and real option theory), as well as provided a complementation for the portfolio theory. The goal of the current study is in the design of methods and models for the facilitation of dry port implementation through the mechanism of public-private partnership on the national market that implies the necessity to mitigate, first and foremost, the shortage of the investments and consequences of risks. The problem of the research was formulated on the ground of the identified contradictions. They rose as a continuation of the trade-off between the opportunities that the investors can gain from the development of terminal business in Russia (i.e. dry port implementation) and risks. As a rule, the higher the investment risk, the greater should be their expected return. However, investors have a different tolerance for the risks. That is why it would be advisable to find an optimum investment. In the given study, the optimum relates to the search for the efficient portfolio, which can provide satisfaction to the investor, depending on its degree of risk aversion. There are many theories and methods in finance, concerning investment choices. Nevertheless, the appropriateness and effectiveness of particular methods should be considered with the allowance of the specifics of the investment projects. For example, the investments in dry ports imply not only the lump sum of financial inflows, but also the long-term payback periods. As a result, capital intensity and longevity of their construction determine the necessity from investors to ensure the return on investment (profitability), along with the rapid return on investment (liquidity), without precluding the fact that the stochastic nature of the project environment is hardly described by the formula-based approach. The current theoretical base for the economic appraisals of the dry port projects more often perceives net present value (NPV) as a technique superior to other decision-making criteria. For example, the portfolio theory, which considers different risk preference of an investor and structures of utility, defines net present value as a better criterion of project appraisal than discounted payback period (DPP). Meanwhile, in business practice, the DPP is more popular. Knowing that the NPV is based on the assumptions of certainty of project life, it cannot be an accurate appraisal approach alone to determine whether or not the project should be accepted for the approval in the environment that is not without of uncertainties. In order to reflect the period or the project’s useful life that is exposed to risks due to changes in political, operational, and financial factors, the second capital budgeting criterion – discounted payback period is profoundly important, particularly for the Russian environment. Those statements represent contradictions that exist in the theory and practice of the applied science. Therefore, it would be desirable to relax the assumptions of portfolio theory and regard DPP as not fewer relevant appraisal approach for the assessment of the investment and risk measure. At the same time, the rationality of the use of both project performance criteria depends on the methods and models, with the help of which these appraisal approaches are calculated in feasibility studies. The deterministic methods cannot ensure the required precision of the results, while the stochastic models guarantee the sufficient level of the accuracy and reliability of the obtained results, providing that the risks are properly identified, evaluated, and mitigated. Otherwise, the project performance indicators may not be confirmed during the phase of project realization. For instance, the economic and political instability can result in the undoing of hard-earned gains, leading to the need for the attraction of the additional finances for the project. The sources of the alternative investments, as well as supportive mitigation strategies, can be studied during the initial phases of project development. During this period, the effectiveness of the investments undertakings can also be improved by the inclusion of the various investors, e.g. Russian Railways’ enterprises and other private companies in the dry port projects. However, the evaluation of the effectiveness of the participation of different investors in the project lack the methods and models that would permit doing the particular feasibility study, foreseeing the quantitative characteristics of risks and their mitigation strategies, which can meet the tolerance of the investors to the risks. For this reason, the research proposes a combination of Monte Carlo method, discounted cash flow technique, the theory of real options, and portfolio theory via a system dynamics simulation approach. The use of this methodology allows for comprehensive risk management process of dry port development to cover all aspects of risk identification, risk evaluation, risk mitigation, risk monitoring, and control phases. A designed system dynamics model can be recommended for the decision-makers on the dry port projects that are financed via a public-private partnership. It permits investors to make a decision appraisal based on random variables of net present value and discounted payback period, depending on different risks factors, e.g. revenue risks, land acquisition risks, traffic volume risks, construction hazards, and political risks. In this case, the statistical mean is used for the explication of the expected value of the DPP and NPV; the standard deviation is proposed as a characteristic of risks, while the elasticity coefficient is applied for rating of risks. Additionally, the risk of failure of project investments and guaranteed recoupment of capital investment can be considered with the help of the model. On the whole, the application of these modern methods of simulation creates preconditions for the controlling of the process of dry port development, i.e. making managerial changes and identifying the most stable parameters that contribute to the optimal alternative scenarios of the project realization in the uncertain environment. System dynamics model allows analyzing the interactions in the most complex mechanism of risk management process of the dry ports development and making proposals for the improvement of the effectiveness of the investments via an estimation of different risk management strategies. For the comparison and ranking of these alternatives in their order of preference to the investor, the proposed indicators of the efficiency of the investments, concerning the NPV, DPP, and coefficient of variation, can be used. Thus, rational investors, who averse to taking increased risks unless they are compensated by the commensurate increase in the expected utility of a risky prospect of dry port development, can be guided by the deduced marginal utility of investments. It is computed on the ground of the results from the system dynamics model. In conclusion, the outlined theoretical and practical implications for the management of risks, which are the key characteristics of public-private partnerships, can help analysts and planning managers in budget decision-making, substantially alleviating the effect from various risks and avoiding unnecessary cost overruns in dry port projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les simulations ont été implémentées avec le programme Java.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study focusing on the identification of return generating factors and to the extent of their influence on share prices the outcome will be a tool for investment analysis in the hands of investors portfolio managers and mutual funds who are mostly concerned with changing share prices. Since the study takes into account the influence of macroeconomic variables on variations in share returns by using the outcome the government can frame out suitable policies on long term basis and that will help in nurturing a healthy economy and resultant stock market. As every company management tries to maximize the wealth of the share holders a clear idea about the return generating variables and their influence will help the management to frame various policies to maximize the wealth of the shareholders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta disertación busca estudiar los mecanismos de transmisión que vinculan el comportamiento de agentes y firmas con las asimetrías presentes en los ciclos económicos. Para lograr esto, se construyeron tres modelos DSGE. El en primer capítulo, el supuesto de función cuadrática simétrica de ajuste de la inversión fue removido, y el modelo canónico RBC fue reformulado suponiendo que des-invertir es más costoso que invertir una unidad de capital físico. En el segundo capítulo, la contribución más importante de esta disertación es presentada: la construcción de una función de utilidad general que anida aversión a la pérdida, aversión al riesgo y formación de hábitos, por medio de una función de transición suave. La razón para hacerlo así es el hecho de que los individuos son aversos a la pérdidad en recesiones, y son aversos al riesgo en auges. En el tercer capítulo, las asimetrías en los ciclos económicos son analizadas junto con ajuste asimétrico en precios y salarios en un contexto neokeynesiano, con el fin de encontrar una explicación teórica de la bien documentada asimetría presente en la Curva de Phillips.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the changes in the length of commercial property leases over the last decade and presents an analysis of the consequent investment and occupational pricing implications for commercial property investmentsIt is argued that the pricing implications of a short lease to an investor are contingent upon the expected costs of the letting termination to the investor, the probability that the letting will be terminated and the volatility of rental values.The paper examines the key factors influencing these variables and presents a framework for incorporating their effects into pricing models.Approaches to their valuation derived from option pricing are critically assessed. It is argued that such models also tend to neglect the price effects of specific risk factors such as tenant circumstances and the terms of break clause. Specific risk factors have a significant bearing on the probability of letting termination and on the level of the resultant financial losses. The merits of a simulation methododology are examined for rental and capital valuations of short leases and properties with break clauses.It is concluded that in addition to the rigour of its internal logic, the success of any methodology is predicated upon the accuracy of the inputs.The lack of reliable data on patterns in, and incidence of, lease termination and the lack of reliable time series of historic property performance limit the efficacy of financial models.