984 resultados para enzyme analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospray ionization time-of-flight (ESI-TOF) mass spectrometry was used to study the quaternary structure of 4-oxalocrotonate tautomerase (EC 5.3.2; 4OT), and four analogues prepared by total chemical synthesis. Wild-type 4OT is a hexamer of 62 amino acid subunits and contains no cysteine residues. The analogues were: (desPro1)4OT, a truncated construct in which Pro1 was deleted; (Cpc1)4OT in which Pro1 was replaced with cyclopentane carboxylate; a derivative [Met(O)45]4OT in which Met45 was oxidized to the sulfoxide; and an analogue (Nle45)4OT in which Met45 was replaced with norleucine. ESI of (Nle45)4OT, (Cpc1)4OT, and 4OT from solution conditions under which the native enzyme was fully active (5 mM ammonium bicarbonate buffer, pH 7.5) gave the intact hexamer as the major species detected by TOF mass spectrometry. In contrast, analysis of [Met(O)45]4OT and (desPro1)4OT under similar conditions yielded predominantly monomer ions. The ESI-TOF measurements were consistent with structural data obtained from circular dichroism spectroscopy. In the context of kinetic data collected for 4OT and these analogues, ESI-TOF mass spectrometry also provided important evidence for the structural and mechanistic significance of the catalytically important Pro1 residue in 4OT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NM23-H2, a presumed regulator of tumor metastasis in humans, is a hexameric protein with both enzymatic (NDP kinase) and regulatory (transcriptional activation) activity. While the structure and catalytic mechanisms have been well characterized, the mode of DNA binding is not known. We examined this latter function in a site-directed mutational study and identified residues and domains essential for the recognition of a c-myc regulatory sequence. Three amino acids, Arg-34, Asn-69, and Lys-135, were found among 30 possibilities to be critical for DNA binding. Two of these, Asn-69 and Lys-135, are not conserved between NM23 variants differing in DNA-binding potential, suggesting that DNA recognition resides partly in nonconserved amino acids. All three DNA-binding defective mutant proteins are active enzymatically and appear to be stable hexamers, suggesting that they perform at the level of DNA recognition and that separate functional domains exist for enzyme catalysis and DNA binding. In the context of the known crystal structure of NM23-H2, the DNA-binding residues are located within distinct structural motifs in the monomer, which are exposed to the surface near the 2-fold axis of adjacent subunits in the hexamer. These findings are explained by a model in which NM23-H2 binds DNA with a combinatorial surface consisting of the "outer" face of the dimer. Chemical crosslinking data support a dimeric DNA-binding mode by NM23-H2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have devised a combinatorial method, restriction endonuclease protection selection and amplification (REPSA), to identify consensus ligand binding sequences in DNA. In this technique, cleavage by a type IIS restriction endonuclease (an enzyme that cleaves DNA at a site distal from its recognition sequence) is prevented by a bound ligand while unbound DNA is cleaved. Since the selection step of REPSA is performed in solution under mild conditions, this approach is amenable to the investigation of ligand-DNA complexes that are either insufficiently stable or not readily separable by other methods. Here we report the use of REPSA to identify the consensus duplex DNA sequence recognized by a G/T-rich oligodeoxyribonucleotide under conditions favoring purine-motif triple-helix formation. Analysis of 47 sequences indicated that recognition between 13 bases on the oligonucleotide 3' end and the duplex DNA was sufficient for triplex formation and indicated the possible existence of a new base triplet, G.AT. This information should help identify appropriate target sequences for purine-motif triplex formation and demonstrates the power of REPSA for investigating ligand-DNA interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hsubc9, a human gene encoding a ubiquitin-conjugating enzyme, has been cloned. The 18-kDa HsUbc9 protein is homologous to the ubiquitin-conjugating enzymes Hus5 of Schizosaccharomyces pombe and Ubc9 of Saccharomyces cerevisiae. The Hsubc9 gene complements a ubc9 mutation of S. cerevisiae. It has been mapped to chromosome 16p13.3 and is expressed in many human tissues, with the highest levels in testis and thymus. According to the Ga14 two-hybrid system analysis, HsUbc9 protein interacts with human recombination protein Rad51. A mouse homolog, Mmubc9, encodes an amino acid sequence that is identical to the human protein. In mouse spermatocytes, MmUbc9 protein, like Rad51 protein, localizes in synaptonemal complexes, which suggests that Ubc9 protein plays a regulatory role in meiosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point mutations were selectively introduced into a cDNA for guinea pig estrogen sulfotransferase (gpEST); each construct was then expressed in Chinese hamster ovary K1 cells. The molecular site chosen for study is a conserved GXXGXXK sequence that resembles the P-loop-type nucleotide-binding motif for ATP- and GTP-binding proteins and is located near the C terminus of all steroid and phenol(aryl) sulfotransferases for which the primary structures are known. Preliminary experiments demonstrated that the GXXGXXK motif is essential for binding the activated sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). The present study was undertaken to ascertain the relative importance of each individual residue of the motif. While the mutation of a single motif residue had little effect on the interaction between gpEST and PAPS as determined by kinetic analysis and photoaffinity labeling, the mutation of any two residues in concert resulted in an approximate 10-fold increase in the Km for PAPS and reduced photoaffinity labeling. The mutation of all three motif residues resulted in an inactive enzyme and complete loss of photoaffinity labeling. Interestingly, several mutants also displayed a striking effect on the Km for the steroid substrate; double mutants, again, demonstrated greater perturbations (8- to 28-fold increase) than did single mutants. Unexpectedly, whereas the mutation of nonmotif residues had a negligible effect on the Km for PAPS, a marked increase in the Km for the estrogen substrate ( > 30-fold) was noted. On the basis of these findings, it is concluded that the sequence GISGDWKN within the C-terminal domain of gpEST represents a critical component of the active site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The orphan nuclear receptor steroidogenic factor 1 (SF-1) is expressed in the adrenal cortex and gonads and regulates the expression of several P450 steroid hydroxylases in vitro. We examined the role of SF-1 in the adrenal glands and gonads in vivo by a targeted disruption of the mouse SF-1 gene. All SF-1-deficient mice died shortly after delivery. Their adrenal glands and gonads were absent, and persistent Mullerian structures were found in all genotypic males. While serum levels of corticosterone in SF-1-deficient mice were diminished, levels of adrenocorticotropic hormone (ACTH) were elevated, consistent with intact pituitary corticotrophs. Intrauterine survival of SF-1-deficient mice appeared normal, and they had normal serum level of corticosterone and ACTH, probably reflecting transplacental passage of maternal steroids. We tested whether SF-1 is required for P450 side-chain-cleavage enzyme (P450scc) expression in the placenta, which expresses both SF-1 and P450scc, and found that in contrast to its strong activation of the P450scc gene promoter in vitro, the absence of SF-1 had no effect on P450scc mRNA levels in vivo. Although the region targeted by our disruption is shared by SF-1 and by embryonal long terminal repeat-binding protein (ELP), a hypothesized alternatively spliced product, we believe that the observed phenotype reflects absent SF-1 alone, as PCR analysis failed to detect ELP transcripts in any mouse tissue, and sequences corresponding to ELP are not conserved across species. These results confirm that SF-1 is an important regulator of adrenal and gonadal development, but its regulation of steroid hydroxylase expression in vivo remains to be established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in vitro selection technique was used to identify a specific high-affinity DNA ligand targeted to human neutrophil elastase (HNE). 1H NMR data and a comparative analysis of the selected sequences suggest that the DNA folds into a G-quartet structure with duplexed ends. The high-affinity binding DNA alone did not inhibit the enzymatic activity of HNE. The DNA was covalently attached to a tetrapeptide, N-methoxysuccinyl-Ala-Ala-Pro-Val, that is a weak competitive inhibitor of HNE. HNE was inhibited by this DNA-peptide conjugate nearly five orders of magnitude more effectively than by the peptide alone. These results demonstrate that in vitro-selected nucleic acids can be used as a vehicle for molecular delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mannitol is the most abundant sugar alcohol in nature, occurring in bacteria, fungi, lichens, and many species of vascular plants. Celery (Apium graveolens L.), a plant that forms mannitol photosynthetically, has high photosynthetic rates thought to results from intrinsic differences in the biosynthesis of hexitols vs. sugars. Celery also exhibits high salt tolerance due to the function of mannitol as an osmoprotectant. A mannitol catabolic enzyme that oxidizes mannitol to mannose (mannitol dehydrogenase, MTD) has been identified. In celery plants, MTD activity and tissue mannitol concentration are inversely related. MTD provides the initial step by which translocated mannitol is committed to central metabolism and, by regulating mannitol pool size, is important in regulating salt tolerance at the cellular level. We have now isolated, sequenced, and characterized a Mtd cDNA from celery. Analyses showed that Mtd RNA was more abundant in cells grown on mannitol and less abundant in salt-stressed cells. A protein database search revealed that the previously described ELI3 pathogenesis-related proteins from parsley and Arabidopsis are MTDs. Treatment of celery cells with salicylic acid resulted in increased MTD activity and RNA. Increased MTD activity results in an increased ability to utilize mannitol. Among other effects, this may provide an additional source of carbon and energy for response to pathogen attack. These responses of the primary enzyme controlling mannitol pool size reflect the importance of mannitol metabolism in plant responses to divergent types of environmental stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maturation of 5S RNA in Escherichia coli is poorly understood. Although it is known that large precursors of 5S RNA accumulate in mutant cells lacking the endoribonuclease-RNase E, almost nothing is known about how the mature 5' and 3' termini of these molecules are generated. We have examined 5S RNA maturation in wild-type and single- or multiple-exoribonuclease-deficient cells by Northern blot and primer-extension analysis. Our results indicate that no mature 5S RNA is made in RNase T-deficient strains. Rather, 5S RNA precursors containing predominantly 2 extra nucleotides at the 3' end accumulate. Apparently, these 5S RNAs are functional inasmuch as mutant cells are viable, growing only slightly slower than wild type. Purified RNase T can remove the extra 3' residues, showing that it is directly involved in the trimming reaction. In contrast, mutations affecting other 3' exoribonucleases have no effect on 5S RNA maturation. Approximately 90% of the 5S RNAs in both wild-type and RNase T- cells contain mature 5' termini, indicating that 5' processing is independent of RNase T action. These data identify the enzyme responsible for generating the mature 3' terminus of 5S RNA molecules and also demonstrate that a completely processed 5S RNA molecule is not essential for cell survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined chemical and enzymatic procedure has been developed to synthesize macroscopic poly[(R)-(-)-3-hydroxybutyrate] (PHB) granules in vitro. The granules form in a matter of minutes when purified polyhydroxyalkanoate (PHA) synthase from Alcaligenes eutrophus is exposed to synthetically prepared (R)-3-hydroxybutyryl coenzyme A, thereby establishing the minimal requirements for PHB granule formation. The artificial granules are spherical with diameters of up to 3 microns and significantly larger than their native counterparts (0.5 micron). The isolated PHB was characterized by 1H and 13C NMR, gel-permeation chromatography, and chemical analysis. The in vitro polymerization system yields PHB with a molecular mass > 10 x 10(6) Da, exceeding by an order of magnitude the mass of PHAs typically extracted from microorganisms. We also demonstrate that the molecular mass of the polymer can be controlled by the initial PHA synthase concentration. Preliminary kinetic analysis of de novo granule formation confirms earlier findings of a lag time for the enzyme but suggests the involvement of an additional granule assembly step. Minimal requirements for substrate recognition were investigated. Since substrate analogs lacking the adenosine 3',5'-bisphosphate moiety of (R)-3-hydroxybutyryl coenzyme A were not accepted by the PHA synthase, we provide evidence that this structural element of the substrate is essential for catalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine seminal ribonuclease (BS-RNase) is a homodimeric enzyme strictly homologous to the pancreatic ribonuclease (RNase A). Native BS-RNase is an equilibrium mixture of two distinct dimers differing in the interchange of the N-terminal segments and in their biological properties. The loop 16-22 plays a fundamental role on the relative stability of the two isomers. Both the primary and tertiary structures of the RNase A differ substantially from those of the seminal ribonuclease in the loop region 16-22. To analyze the possible stable conformations of this loop in both enzymes, structure predictions have been attempted, according to a procedure described by Palmer and Scheraga [Palmer, K. A. & Scheraga, H. A. (1992) J. Comput. Chem. 13, 329-350]. Results compare well with experimental x-ray structures and clarify the structural determinants that are responsible for the swapping of the N-terminal domains and for the peculiar properties of BS-RNase. Minimal modifications of RNase A sequence needed to form a stable swapped dimer are also predicted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ubiquitin-activating enzyme, E1, is the first enzyme in the pathway leading to formation of ubiquitin-protein conjugates. E1 exists as two isoforms in human cells which are separable by electrophoresis. These isoforms migrate with apparent molecular sizes of 110 kDa and 117 kDa in SDS/polyacrylamide gels. Immunoprecipitation of E1 from lysates of HeLa cells metabolically labeled with [32P]phosphate indicated the presence of a phosphorylated form of E1 which migrates at 117 kDa. Phospho amino acid analysis identified serine as the phosphorylated residue in E1. Phosphorylated E1 was also detected in normal and transformed cells from another human cell line. Phosphatase-catalyzed dephosphorylation of E1 in vitro did not eliminate the 117-kDa E1 isoform detected by Coomassie staining after SDS/polyacrylamide gel electrophoresis, thereby demonstrating that phosphorylation is not the sole structural feature differentiating the isoforms of E1. These observations suggest new hypotheses concerning mechanisms of metabolic regulation of the ubiquitin conjugation pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose dehydrogenase (EC 1.1.1.47) from the halophilic Archaeon Haloferax mediterranei belongs to the medium-chain alcohol dehydrogenase superfamily and requires a zinc ion for catalysis. The zinc ion is coordinated by a histidine, a water molecule and two other ligands from the protein or the substrate, which vary during the catalytic cycle of the enzyme. In many enzymes of this superfamily one of the zinc ligands is commonly cysteine, which is replaced by an aspartate residue at position 38 in the halophilic enzyme. This change has been only observed in glucose dehydrogenases from extremely halophilic microorganisms belonging to the Archaea Domain. This paper describes biochemical studies and structural comparisons to analyze the role of sequence differences between thermophilic and halophilic glucose dehydrogenases which contain a zinc ion within the protein surrounded by three ligands. Whilst the catalytic activity of the D38C GlcDH mutant is reduced, its thermal stability is enhanced, consistent with the greater structural similarity between this mutant and the homologous thermophilic enzyme from Thermoplasma acidophilum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessment of protein dynamics in living cells is crucial for understanding their biological properties and functions. The SNAP-tag, a self labeling suicide enzyme, presents a tool with unique features that can be adopted for determining protein dynamics in living cells. Here we present detailed protocols for the use of SNAP in fluorescent pulse-chase and quench-chase-pulse experiments. These time-slicing methods provide powerful tools to assay and quantify the fate and turnover rate of proteins of different ages. We cover advantages and pitfalls of SNAP-tagging in fixed- and live-cell studies and evaluate the recently developed fast-acting SNAPf variant. In addition, to facilitate the analysis of protein turnover datasets, we present an automated algorithm for spot recognition and quantification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06