949 resultados para effective atomic number
Resumo:
A drilling transect across the sedimented eastern flank of the Juan de Fuca Ridge, conducted during Leg 168 of the Ocean Drilling Program, resulted in the recovery of samples of volcanic basement rocks (pillow basalts, massive basalts, and volcanic glass breccias) that exhibit the effects of low-temperature hydrothermal alteration. Secondary clays are ubiquitous, with Mg-rich and Fe-rich saponite and celadonitic clays commonly accounting for several percent, and up to 10%-20% by volume. Present-day temperatures of the basement sites vary from 15° to 64°C, with the coolest site being about 0.8 Ma, and the warmest site being about 3.5 Ma. Whereas clays are abundant at sites that have been heated to present temperatures of 23°C and higher, the youngest site at 15°C has only a small trace of secondary clay alteration. Alteration increases as temperatures increase and as the volcanic basement ages. The chemical compositions of secondary clays were determined by electron microprobe, and additional trace element data were determined by both conventional nebulization inductively coupled plasma-mass spectroscopy (ICP-MS) and laser-ablation ICP-MS. Trioctahedral saponite and pyrite are characteristic of the interior of altered rock pieces, forming under conditions of low-oxygen fugacity. Dioctahedral celadonite-like clays along with iron oxyhydroxide and Mg-saponite are characteristic of oxidized haloes surrounding the nonoxidized rock interiors. Chemical compositions of the clays are very similar to those determined from other deep-sea basalts altered at low temperature. The variable Mg:Fe of saponite appears to be a systematic function both of the Mg:Fe of the host rock and the oxidation state during water-rock interaction.
Resumo:
The engineering careers models were diverse in Europe, and are adopting now in Spain the Bolonia process for European Universities. Separated from older Universities, that are in part technically active, Civil Engineering (Caminos, Canales y Puertos) started at end of 18th century in Spain adopting the French models of Upper Schools for state civil servants with exam at entry. After 1800 intense wars, to conserve forest regions Ingenieros de Montes appeared as Upper School, and in 1855 also the Ingenieros Agrónomos to push up related techniques and practices. Other Engineers appeared as Upper Schools but more towards private factories. These ES got all adapted Lower Schools of Ingeniero Tecnico. Recently both grew much in number and evolved, linked also to recognized Professions. Spanish society, into European Community, evolved across year 2000, in part highly well, but with severe discordances, that caused severe youth unemployment with 2008-2011 crisis. With Bolonia process high formal changes step in from 2010-11, accepted with intense adaptation. The Lower Schools are changing towards the Upper Schools, and both that have shifted since 2010-11 various 4-years careers (Grado), some included into the precedent Professions, and diverse Masters. Acceptation of them to get students has started relatively well, and will evolve, and acceptation of new grades for employment in Spain, Europe or outside will be essential. Each Grado has now quite rigid curricula and programs, MOODLE was introduced to connect pupils, some specific uses of Personal Computers are taught in each subject. Escuela de Agronomos centre, reorganized with its old name in its precedent buildings at entrance of Campus Moncloa, offers Grados of Agronomic Engineering and Science for various public and private activities for agriculture, Alimentary Engineering for alimentary activities and control, Agro-Environmental Engineering more related to environment activities, and in part Biotechnology also in laboratories in Campus Monte-Gancedo for Biotechnology of Plants and Computational Biotechnology. Curricula include Basics, Engineering, Practices, Visits, English, ?project of end of career?, Stays. Some masters will conduce to specific professional diploma, list includes now Agro-Engineering, Agro-Forestal Biotechnology, Agro and Natural Resources Economy, Complex Physical Systems, Gardening and Landscaping, Rural Genie, Phytogenetic Resources, Plant Genetic Resources, Environmental Technology for Sustainable Agriculture, Technology for Human Development and Cooperation.
Resumo:
The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ‘traditional’ set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified-easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.
Resumo:
Nuestro cerebro contiene cerca de 1014 sinapsis neuronales. Esta enorme cantidad de conexiones proporciona un entorno ideal donde distintos grupos de neuronas se sincronizan transitoriamente para provocar la aparición de funciones cognitivas, como la percepción, el aprendizaje o el pensamiento. Comprender la organización de esta compleja red cerebral en base a datos neurofisiológicos, representa uno de los desafíos más importantes y emocionantes en el campo de la neurociencia. Se han propuesto recientemente varias medidas para evaluar cómo se comunican las diferentes partes del cerebro a diversas escalas (células individuales, columnas corticales, o áreas cerebrales). Podemos clasificarlos, según su simetría, en dos grupos: por una parte, la medidas simétricas, como la correlación, la coherencia o la sincronización de fase, que evalúan la conectividad funcional (FC); mientras que las medidas asimétricas, como la causalidad de Granger o transferencia de entropía, son capaces de detectar la dirección de la interacción, lo que denominamos conectividad efectiva (EC). En la neurociencia moderna ha aumentado el interés por el estudio de las redes funcionales cerebrales, en gran medida debido a la aparición de estos nuevos algoritmos que permiten analizar la interdependencia entre señales temporales, además de la emergente teoría de redes complejas y la introducción de técnicas novedosas, como la magnetoencefalografía (MEG), para registrar datos neurofisiológicos con gran resolución. Sin embargo, nos hallamos ante un campo novedoso que presenta aun varias cuestiones metodológicas sin resolver, algunas de las cuales trataran de abordarse en esta tesis. En primer lugar, el creciente número de aproximaciones para determinar la existencia de FC/EC entre dos o más señales temporales, junto con la complejidad matemática de las herramientas de análisis, hacen deseable organizarlas todas en un paquete software intuitivo y fácil de usar. Aquí presento HERMES (http://hermes.ctb.upm.es), una toolbox en MatlabR, diseñada precisamente con este fin. Creo que esta herramienta será de gran ayuda para todos aquellos investigadores que trabajen en el campo emergente del análisis de conectividad cerebral y supondrá un gran valor para la comunidad científica. La segunda cuestión practica que se aborda es el estudio de la sensibilidad a las fuentes cerebrales profundas a través de dos tipos de sensores MEG: gradiómetros planares y magnetómetros, esta aproximación además se combina con un enfoque metodológico, utilizando dos índices de sincronización de fase: phase locking value (PLV) y phase lag index (PLI), este ultimo menos sensible a efecto la conducción volumen. Por lo tanto, se compara su comportamiento al estudiar las redes cerebrales, obteniendo que magnetómetros y PLV presentan, respectivamente, redes más densamente conectadas que gradiómetros planares y PLI, por los valores artificiales que crea el problema de la conducción de volumen. Sin embargo, cuando se trata de caracterizar redes epilépticas, el PLV ofrece mejores resultados, debido a la gran dispersión de las redes obtenidas con PLI. El análisis de redes complejas ha proporcionado nuevos conceptos que mejoran caracterización de la interacción de sistemas dinámicos. Se considera que una red está compuesta por nodos, que simbolizan sistemas, cuyas interacciones se representan por enlaces, y su comportamiento y topología puede caracterizarse por un elevado número de medidas. Existe evidencia teórica y empírica de que muchas de ellas están fuertemente correlacionadas entre sí. Por lo tanto, se ha conseguido seleccionar un pequeño grupo que caracteriza eficazmente estas redes, y condensa la información redundante. Para el análisis de redes funcionales, la selección de un umbral adecuado para decidir si un determinado valor de conectividad de la matriz de FC es significativo y debe ser incluido para un análisis posterior, se convierte en un paso crucial. En esta tesis, se han obtenido resultados más precisos al utilizar un test de subrogadas, basado en los datos, para evaluar individualmente cada uno de los enlaces, que al establecer a priori un umbral fijo para la densidad de conexiones. Finalmente, todas estas cuestiones se han aplicado al estudio de la epilepsia, caso práctico en el que se analizan las redes funcionales MEG, en estado de reposo, de dos grupos de pacientes epilépticos (generalizada idiopática y focal frontal) en comparación con sujetos control sanos. La epilepsia es uno de los trastornos neurológicos más comunes, con más de 55 millones de afectados en el mundo. Esta enfermedad se caracteriza por la predisposición a generar ataques epilépticos de actividad neuronal anormal y excesiva o bien síncrona, y por tanto, es el escenario perfecto para este tipo de análisis al tiempo que presenta un gran interés tanto desde el punto de vista clínico como de investigación. Los resultados manifiestan alteraciones especificas en la conectividad y un cambio en la topología de las redes en cerebros epilépticos, desplazando la importancia del ‘foco’ a la ‘red’, enfoque que va adquiriendo relevancia en las investigaciones recientes sobre epilepsia. ABSTRACT There are about 1014 neuronal synapses in the human brain. This huge number of connections provides the substrate for neuronal ensembles to become transiently synchronized, producing the emergence of cognitive functions such as perception, learning or thinking. Understanding the complex brain network organization on the basis of neuroimaging data represents one of the most important and exciting challenges for systems neuroscience. Several measures have been recently proposed to evaluate at various scales (single cells, cortical columns, or brain areas) how the different parts of the brain communicate. We can classify them, according to their symmetry, into two groups: symmetric measures, such as correlation, coherence or phase synchronization indexes, evaluate functional connectivity (FC); and on the other hand, the asymmetric ones, such as Granger causality or transfer entropy, are able to detect effective connectivity (EC) revealing the direction of the interaction. In modern neurosciences, the interest in functional brain networks has increased strongly with the onset of new algorithms to study interdependence between time series, the advent of modern complex network theory and the introduction of powerful techniques to record neurophysiological data, such as magnetoencephalography (MEG). However, when analyzing neurophysiological data with this approach several questions arise. In this thesis, I intend to tackle some of the practical open problems in the field. First of all, the increase in the number of time series analysis algorithms to study brain FC/EC, along with their mathematical complexity, creates the necessity of arranging them into a single, unified toolbox that allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them. I developed such a toolbox for this aim, it is named HERMES (http://hermes.ctb.upm.es), and encompasses several of the most common indexes for the assessment of FC and EC running for MatlabR environment. I believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis and will entail a great value for the scientific community. The second important practical issue tackled in this thesis is the evaluation of the sensitivity to deep brain sources of two different MEG sensors: planar gradiometers and magnetometers, in combination with the related methodological approach, using two phase synchronization indexes: phase locking value (PLV) y phase lag index (PLI), the latter one being less sensitive to volume conduction effect. Thus, I compared their performance when studying brain networks, obtaining that magnetometer sensors and PLV presented higher artificial values as compared with planar gradiometers and PLI respectively. However, when it came to characterize epileptic networks it was the PLV which gives better results, as PLI FC networks where very sparse. Complex network analysis has provided new concepts which improved characterization of interacting dynamical systems. With this background, networks could be considered composed of nodes, symbolizing systems, whose interactions with each other are represented by edges. A growing number of network measures is been applied in network analysis. However, there is theoretical and empirical evidence that many of these indexes are strongly correlated with each other. Therefore, in this thesis I reduced them to a small set, which could more efficiently characterize networks. Within this framework, selecting an appropriate threshold to decide whether a certain connectivity value of the FC matrix is significant and should be included in the network analysis becomes a crucial step, in this thesis, I used the surrogate data tests to make an individual data-driven evaluation of each of the edges significance and confirmed more accurate results than when just setting to a fixed value the density of connections. All these methodologies were applied to the study of epilepsy, analysing resting state MEG functional networks, in two groups of epileptic patients (generalized and focal epilepsy) that were compared to matching control subjects. Epilepsy is one of the most common neurological disorders, with more than 55 million people affected worldwide, characterized by its predisposition to generate epileptic seizures of abnormal excessive or synchronous neuronal activity, and thus, this scenario and analysis, present a great interest from both the clinical and the research perspective. Results revealed specific disruptions in connectivity and network topology and evidenced that networks’ topology is changed in epileptic brains, supporting the shift from ‘focus’ to ‘networks’ which is gaining importance in modern epilepsy research.
Resumo:
The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ?traditional? set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified, easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.
Resumo:
Writing an efficient abstract is always a difficult and significant work in academic writing. What kinds of abstracts are well reputed in sport science? To answer this question, 20 abstracts from top journals of sport science were analyzed in the current research. The number of words and rhetorical moves were studied to assess the structures of the abstracts. Meanwhile, the key clauses, citations, the use of first person pronoun, the adoption of abbreviations and acronyms, hedging and the main tense were included in the analysis of the writing skills. Results have show: (1) Almost all of the abstracts were non-structured, and the length varied a lot, but the average word count was about 210-220; (2) the use of writing skills, such as key clauses, citations and hedging differed depending on the preference of the journal where the abstract appeared, and the main tense was selected based on the context of the abstract. In most cases, abbreviations and acronyms were allowed to be used, while the first person pronoun was always avoided
Resumo:
Los hipergrafos dirigidos se han empleado en problemas relacionados con lógica proposicional, bases de datos relacionales, linguística computacional y aprendizaje automático. Los hipergrafos dirigidos han sido también utilizados como alternativa a los grafos (bipartitos) dirigidos para facilitar el estudio de las interacciones entre componentes de sistemas complejos que no pueden ser fácilmente modelados usando exclusivamente relaciones binarias. En este contexto, este tipo de representación es conocida como hiper-redes. Un hipergrafo dirigido es una generalización de un grafo dirigido especialmente adecuado para la representación de relaciones de muchos a muchos. Mientras que una arista en un grafo dirigido define una relación entre dos de sus nodos, una hiperarista en un hipergrafo dirigido define una relación entre dos conjuntos de sus nodos. La conexión fuerte es una relación de equivalencia que divide el conjunto de nodos de un hipergrafo dirigido en particiones y cada partición define una clase de equivalencia conocida como componente fuertemente conexo. El estudio de los componentes fuertemente conexos de un hipergrafo dirigido puede ayudar a conseguir una mejor comprensión de la estructura de este tipo de hipergrafos cuando su tamaño es considerable. En el caso de grafo dirigidos, existen algoritmos muy eficientes para el cálculo de los componentes fuertemente conexos en grafos de gran tamaño. Gracias a estos algoritmos, se ha podido averiguar que la estructura de la WWW tiene forma de “pajarita”, donde más del 70% del los nodos están distribuidos en tres grandes conjuntos y uno de ellos es un componente fuertemente conexo. Este tipo de estructura ha sido también observada en redes complejas en otras áreas como la biología. Estudios de naturaleza similar no han podido ser realizados en hipergrafos dirigidos porque no existe algoritmos capaces de calcular los componentes fuertemente conexos de este tipo de hipergrafos. En esta tesis doctoral, hemos investigado como calcular los componentes fuertemente conexos de un hipergrafo dirigido. En concreto, hemos desarrollado dos algoritmos para este problema y hemos determinado que son correctos y cuál es su complejidad computacional. Ambos algoritmos han sido evaluados empíricamente para comparar sus tiempos de ejecución. Para la evaluación, hemos producido una selección de hipergrafos dirigidos generados de forma aleatoria inspirados en modelos muy conocidos de grafos aleatorios como Erdos-Renyi, Newman-Watts-Strogatz and Barabasi-Albert. Varias optimizaciones para ambos algoritmos han sido implementadas y analizadas en la tesis. En concreto, colapsar los componentes fuertemente conexos del grafo dirigido que se puede construir eliminando ciertas hiperaristas complejas del hipergrafo dirigido original, mejora notablemente los tiempos de ejecucion de los algoritmos para varios de los hipergrafos utilizados en la evaluación. Aparte de los ejemplos de aplicación mencionados anteriormente, los hipergrafos dirigidos han sido también empleados en el área de representación de conocimiento. En concreto, este tipo de hipergrafos se han usado para el cálculo de módulos de ontologías. Una ontología puede ser definida como un conjunto de axiomas que especifican formalmente un conjunto de símbolos y sus relaciones, mientras que un modulo puede ser entendido como un subconjunto de axiomas de la ontología que recoge todo el conocimiento que almacena la ontología sobre un conjunto especifico de símbolos y sus relaciones. En la tesis nos hemos centrado solamente en módulos que han sido calculados usando la técnica de localidad sintáctica. Debido a que las ontologías pueden ser muy grandes, el cálculo de módulos puede facilitar las tareas de re-utilización y mantenimiento de dichas ontologías. Sin embargo, analizar todos los posibles módulos de una ontología es, en general, muy costoso porque el numero de módulos crece de forma exponencial con respecto al número de símbolos y de axiomas de la ontología. Afortunadamente, los axiomas de una ontología pueden ser divididos en particiones conocidas como átomos. Cada átomo representa un conjunto máximo de axiomas que siempre aparecen juntos en un modulo. La decomposición atómica de una ontología es definida como un grafo dirigido de tal forma que cada nodo del grafo corresponde con un átomo y cada arista define una dependencia entre una pareja de átomos. En esta tesis introducimos el concepto de“axiom dependency hypergraph” que generaliza el concepto de descomposición atómica de una ontología. Un modulo en una ontología correspondería con un componente conexo en este tipo de hipergrafos y un átomo de una ontología con un componente fuertemente conexo. Hemos adaptado la implementación de nuestros algoritmos para que funcionen también con axiom dependency hypergraphs y poder de esa forma calcular los átomos de una ontología. Para demostrar la viabilidad de esta idea, hemos incorporado nuestros algoritmos en una aplicación que hemos desarrollado para la extracción de módulos y la descomposición atómica de ontologías. A la aplicación la hemos llamado HyS y hemos estudiado sus tiempos de ejecución usando una selección de ontologías muy conocidas del área biomédica, la mayoría disponibles en el portal de Internet NCBO. Los resultados de la evaluación muestran que los tiempos de ejecución de HyS son mucho mejores que las aplicaciones más rápidas conocidas. ABSTRACT Directed hypergraphs are an intuitive modelling formalism that have been used in problems related to propositional logic, relational databases, computational linguistic and machine learning. Directed hypergraphs are also presented as an alternative to directed (bipartite) graphs to facilitate the study of the interactions between components of complex systems that cannot naturally be modelled as binary relations. In this context, they are known as hyper-networks. A directed hypergraph is a generalization of a directed graph suitable for representing many-to-many relationships. While an edge in a directed graph defines a relation between two nodes of the graph, a hyperedge in a directed hypergraph defines a relation between two sets of nodes. Strong-connectivity is an equivalence relation that induces a partition of the set of nodes of a directed hypergraph into strongly-connected components. These components can be collapsed into single nodes. As result, the size of the original hypergraph can significantly be reduced if the strongly-connected components have many nodes. This approach might contribute to better understand how the nodes of a hypergraph are connected, in particular when the hypergraphs are large. In the case of directed graphs, there are efficient algorithms that can be used to compute the strongly-connected components of large graphs. For instance, it has been shown that the macroscopic structure of the World Wide Web can be represented as a “bow-tie” diagram where more than 70% of the nodes are distributed into three large sets and one of these sets is a large strongly-connected component. This particular structure has been also observed in complex networks in other fields such as, e.g., biology. Similar studies cannot be conducted in a directed hypergraph because there does not exist any algorithm for computing the strongly-connected components of the hypergraph. In this thesis, we investigate ways to compute the strongly-connected components of directed hypergraphs. We present two new algorithms and we show their correctness and computational complexity. One of these algorithms is inspired by Tarjan’s algorithm for directed graphs. The second algorithm follows a simple approach to compute the stronglyconnected components. This approach is based on the fact that two nodes of a graph that are strongly-connected can also reach the same nodes. In other words, the connected component of each node is the same. Both algorithms are empirically evaluated to compare their performances. To this end, we have produced a selection of random directed hypergraphs inspired by existent and well-known random graphs models like Erd˝os-Renyi and Newman-Watts-Strogatz. Besides the application examples that we mentioned earlier, directed hypergraphs have also been employed in the field of knowledge representation. In particular, they have been used to compute the modules of an ontology. An ontology is defined as a collection of axioms that provides a formal specification of a set of terms and their relationships; and a module is a subset of an ontology that completely captures the meaning of certain terms as defined in the ontology. In particular, we focus on the modules computed using the notion of syntactic locality. As ontologies can be very large, the computation of modules facilitates the reuse and maintenance of these ontologies. Analysing all modules of an ontology, however, is in general not feasible as the number of modules grows exponentially in the number of terms and axioms of the ontology. Nevertheless, the modules can succinctly be represented using the Atomic Decomposition of an ontology. Using this representation, an ontology can be partitioned into atoms, which are maximal sets of axioms that co-occur in every module. The Atomic Decomposition is then defined as a directed graph such that each node correspond to an atom and each edge represents a dependency relation between two atoms. In this thesis, we introduce the notion of an axiom dependency hypergraph which is a generalization of the atomic decomposition of an ontology. A module in the ontology corresponds to a connected component in the hypergraph, and the atoms of the ontology to the strongly-connected components. We apply our algorithms for directed hypergraphs to axiom dependency hypergraphs and in this manner, we compute the atoms of an ontology. To demonstrate the viability of this approach, we have implemented the algorithms in the application HyS which computes the modules of ontologies and calculate their atomic decomposition. In the thesis, we provide an experimental evaluation of HyS with a selection of large and prominent biomedical ontologies, most of which are available in the NCBO Bioportal. HyS outperforms state-of-the-art implementations in the tasks of extracting modules and computing the atomic decomposition of these ontologies.
Resumo:
Funding The research described in this paper is funded by Cancer Research UK, registered under application number C50862/A18446. The systematic review protocol reported in this paper was previously peer-reviewed by Cancer Research UK as part of the funding process. The funders had no role in protocol design, decision to publish, or preparation of the manuscript.
Resumo:
Aggregation of Ig light chains to form amyloid fibrils is a characteristic feature of light-chain amyloidosis, a light-chain deposition disease. A recombinant variable domain of the light chain SMA was used to form amyloid fibrils in vitro. Fibril formation was monitored by atomic force microscopy imaging. Single filaments 2.4 nm in diameter were predominant at early times; protofibrils 4.0 nm in diameter were predominant at intermediate times; type I and type II fibrils 8.0 nm and 6.0 nm in diameter, respectively, were predominant at the endpoints. The increase in number of fibrils correlated with increased binding of the fluorescent dye thioflavin T. The fibrils and protofibrils showed a braided structure, suggesting that their formation involves the winding of protofibrils and filaments, respectively. These observations support a model in which two filaments combine to form a protofibril, two protofibrils intertwine to form a type I fibril, and three filaments form a type II fibril.
Resumo:
Between 30% and 90% of the prison population is estimated to have survived traumatic experiences such as sexual, emotional, and physical abuse prior to incarceration (Anonymous, 1999; Fondacaro, Holt, & Powell, 1999; Messina & Grella, 2006; Pollard & Baker, 2000; Veysey, De Cou, & Prescott, 1998). Similarly, information from the Bureau of Justice Statistics (as reported in Warren, 2001) estimated that more than half of the women in state prisons have experienced past physical and sexual abuse. Thus, given the astonishing number of inmates who appear to be victims of some kind of trauma, it seems likely that those who work with these inmates (e.g., prison staff, guards, and treatment providers) will in some way encounter challenges related to the inmates' trauma history. These difficulties may appear in any number of forms including inmates' behavioral outbursts, increased emotionality, sensitivity to triggering situations, and chronic physical or mental health needs (Veysey, et al., 1998). It is also likely that these individuals with trauma histories would benefit greatly from treatment while incarcerated. This treatment could be utilized to minimize symptoms of posttraumatic stress, decrease behavioral problems, and help the inmate function more effectively in society when released from incarceration (Kokorowski & Freng, 2001; Tucker, Cosio, Meshreki, 2003). Few studies have explored the types of trauma treatment that are effective with inmate populations or made specific suggestions for clinicians working in forensic settings (Kokorowski & Freng, 2001). Essentially, there appears to be a large gap in terms of the need for trauma treatment for inmates and the lack of literature addressing what to do about it. However, clinicians across the country seem to be quietly attempting to fulfill this need for trauma treatment with incarcerated populations. They are providing this greatly needed treatment every day. in the face of enormous challenges and often without recognition or the opportunity to share their valuable work with the larger community.