1000 resultados para e-communication
Resumo:
The advent and evolution of geohazard warning systems is a very interesting study. The two broad fields that are immediately visible are that of geohazard evaluation and subsequent warning dissemination. Evidently, the latter field lacks any systematic study or standards. Arbitrarily organized and vague data and information on warning techniques create confusion and indecision. The purpose of this review is to try and systematize the available bulk of information on warning systems so that meaningful insights can be derived through decidable flowcharts, and a developmental process can be undertaken. Hence, the methods and technologies for numerous geohazard warning systems have been assessed by putting them into suitable categories for better understanding of possible ways to analyze their efficacy as well as shortcomings. By establishing a classification scheme based on extent, control, time period, and advancements in technology, the geohazard warning systems available in any literature could be comprehensively analyzed and evaluated. Although major advancements have taken place in geohazard warning systems in recent times, they have been lacking a complete purpose. Some systems just assess the hazard and wait for other means to communicate, and some are designed only for communication and wait for the hazard information to be provided, which usually is after the mishap. Primarily, systems are left at the mercy of administrators and service providers and are not in real time. An integrated hazard evaluation and warning dissemination system could solve this problem. Warning systems have also suffered from complexity of nature, requirement of expert-level monitoring, extensive and dedicated infrastructural setups, and so on. The user community, which would greatly appreciate having a convenient, fast, and generalized warning methodology, is surveyed in this review. The review concludes with the future scope of research in the field of hazard warning systems and some suggestions for developing an efficient mechanism toward the development of an automated integrated geohazard warning system. DOI: 10.1061/(ASCE)NH.1527-6996.0000078. (C) 2012 American Society of Civil Engineers.
Resumo:
This paper considers the problem of identifying the footprints of communication of multiple transmitters in a given geographical area. To do this, a number of sensors are deployed at arbitrary but known locations in the area, and their individual decisions regarding the presence or absence of the transmitters' signal are combined at a fusion center to reconstruct the spatial spectral usage map. One straightforward scheme to construct this map is to query each of the sensors and cluster the sensors that detect the primary's signal. However, using the fact that a typical transmitter footprint map is a sparse image, two novel compressive sensing based schemes are proposed, which require significantly fewer number of transmissions compared to the querying scheme. A key feature of the proposed schemes is that the measurement matrix is constructed from a pseudo-random binary phase shift applied to the decision of each sensor prior to transmission. The measurement matrix is thus a binary ensemble which satisfies the restricted isometry property. The number of measurements needed for accurate footprint reconstruction is determined using compressive sampling theory. The three schemes are compared through simulations in terms of a performance measure that quantifies the accuracy of the reconstructed spatial spectral usage map. It is found that the proposed sparse reconstruction technique-based schemes significantly outperform the round-robin scheme.
Resumo:
The following paper presents a Powerline Communication (PLC) Method for grid interfaced inverters, for smart grid application. The PLC method is based on the concept of the composite vector which involves multiple components rotating at different harmonic frequencies. The pulsed information is modulated on the fundamental component of the grid current as a specific repeating sequence of a particular harmonic. The principle of communication is same as that of power flow, thus reducing the complexity. The power flow and information exchange are simultaneously accomplished by the interfacing inverters based on current programmed vector control, thus eliminating the need for dedicated hardware. Simulation results have been shown for inter-inverter communication, both under ideal and distorted conditions, using various harmonic modulating signals.
Resumo:
Single-carrier frequency division multiple access (SC-FDMA) has become a popular alternative to orthogonal frequency division multiple access (OFDMA) in multiuser communication on the uplink. This is mainly due to the low peak-to-average power ratio (PAPR) of SC-FDMA compared to that of OFDMA. Long-term evolution (LTE) uses SC-FDMA on the uplink to exploit this PAPR advantage to reduce transmit power amplifier backoff in user terminals. In this paper, we show that SC-FDMA can be beneficially used for multiuser communication on the downlink as well. We present SC-FDMA transmit and receive signaling architectures for multiuser communication on the downlink. The benefits of using SC-FDMA on the downlink are that SC-FDMA can achieve i) significantly better bit error rate (BER) performance at the user terminal compared to OFDMA, and ii) improved PAPR compared to OFDMA which reduces base station (BS) power amplifier backoff (making BSs more green). SC-FDMA receiver needs to do joint equalization, which can be carried out using low complexity equalization techniques. For this, we present a local neighborhood search based equalization algorithm for SC-FDMA. This algorithm is very attractive both in complexity as well as performance. We present simulation results that establish the PAPR and BER performance advantage of SC-FDMA over OFDMA in multiuser SISO/MIMO downlink as well as in large-scale multiuser MISO downlink with tens to hundreds of antennas at the BS.
Resumo:
In Orthogonal Frequency Division Multiplexing and Discrete Multitone transceivers, a guard interval called Cyclic Prefix (CP) is inserted to avoid inter-symbol interference. The length of the CP is usually greater than the impulse response of the channel resulting in a loss of useful data carriers. In order to avoid long CP, a time domain equalizer is used to shorten the channel. In this paper, we propose a method to include a delay in the zero-forcing equalizer and obtain an optimal value of the delay, based on the location of zeros of the channel. The performance of the algorithms is studied using numerical simulations.
Resumo:
Establishing the relative orientation of the two benzene molecules in the dimer has remained an enigmatic challenge. Consensus has narrowed the choice of structures to either a T-shape, that may be tilted, or a parallel displaced arrangement, but the relatively small energy differences makes identifying the global minimum difficult. Here we report an ab initio Car-Parrinello Molecular Dynamics based metadynamics computation of the free-energy landscape of the benzene dimer. Our calculations show that although competing structures may be isoenergetic, free energy always favors a tilted T-shape geometry at all temperatures where the bound benzene dimer exist. (C) 2013 AIP Publishing LLC.
Resumo:
The following paper presents a Powerline Communication (PLC) Method for Single Phase interfaced inverters in domestic microgrids. The PLC method is based on the injection of a repeating sequence of a specific harmonic, which is then modulated on the fundamental component of the grid current supplied by the inverters to the microgrid. The power flow and information exchange are simultaneously accomplished by the grid interacting inverters based on current programmed vector control, hence there is no need for dedicated hardware. Simulation results have been shown for inter-inverter communication under different operating conditions to propose the viability. These simulations have been experimentally validated and the corresponding results have also been presented in the paper.
Resumo:
We model communication of bursty sources: 1) over multiaccess channels, with either independent decoding or joint decoding and 2) over degraded broadcast channels, by a discrete-time multiclass processor sharing queue. We utilize error exponents to give a characterization of the processor sharing queue. We analyze the processor sharing queue model for the stable region of message arrival rates, and show the existence of scheduling policies for which the stability region converges to the information-theoretic capacity region in an appropriate limiting sense.
Resumo:
In this paper, the approach for assigning cooperative communication of Uninhabited Aerial Vehicles (UAV) to perform multiple tasks on multiple targets is posed as a combinatorial optimization problem. The multiple task such as classification, attack and verification of target using UAV is employed using nature inspired techniques such as Artificial Immune System (AIS), Particle Swarm Optimization (PSO) and Virtual Bee Algorithm (VBA). The nature inspired techniques have an advantage over classical combinatorial optimization methods like prohibitive computational complexity to solve this NP-hard problem. Using the algorithms we find the best sequence in which to attack and destroy the targets while minimizing the total distance traveled or the maximum distance traveled by an UAV. The performance analysis of the UAV to classify, attack and verify the target is evaluated using AIS, PSO and VBA.
Resumo:
We develop a communication theoretic framework for modeling 2-D magnetic recording channels. Using the model, we define the signal-to-noise ratio (SNR) for the channel considering several physical parameters, such as the channel bit density, code rate, bit aspect ratio, and noise parameters. We analyze the problem of optimizing the bit aspect ratio for maximizing SNR. The read channel architecture comprises a novel 2-D joint self-iterating equalizer and detection system with noise prediction capability. We evaluate the system performance based on our channel model through simulations. The coded performance with the 2-D equalizer detector indicates similar to 5.5 dB of SNR gain over uncoded data.
Resumo:
Mitochondrial Hsp70 (mtHsp70) is essential for a vast repertoire of functions, including protein import, and requires effective interdomain communication for efficient partner-protein interactions. However, the in vivo functional significance of allosteric regulation in eukaryotes is poorly defined. Using integrated biochemical and yeast genetic approaches, we provide compelling evidence that a conserved substrate-binding domain (SBD) loop, L-4,L-5, plays a critical role in allosteric communication governing mtHsp70 chaperone functions across species. In yeast, a temperature-sensitive L-4,L-5 mutation (E467A) disrupts bidirectional domain communication, leading to compromised protein import and mitochondrial function. Loop L-4,L-5 functions synergistically with the linker in modulating the allosteric interface and conformational transitions between SBD and the nucleotide-binding domain (NBD), thus regulating interdomain communication. Second-site intragenic suppressors of E467A isolated within the SBD suppress domain communication defects by conformationally altering the allosteric interface, thereby restoring import and growth phenotypes. Strikingly, the suppressor mutations highlight that restoration of communication from NBD to SBD alone is the minimum essential requirement for effective in vivo function when primed at higher basal ATPase activity, mimicking the J-protein-bound state. Together these findings provide the first mechanistic insights into critical regions within the SBD of mtHsp70s regulating interdomain communication, thus highlighting its importance in protein translocation and mitochondrial biogenesis.
Resumo:
Communication complexity refers to the minimum rate of public communication required for generating a maximal-rate secret key (SK) in the multiterminal source model of Csiszar and Narayan. Tyagi recently characterized this communication complexity for a two-terminal system. We extend the ideas in Tyagi's work to derive a lower bound on communication complexity in the general multiterminal setting. In the important special case of the complete graph pairwise independent network (PIN) model, our bound allows us to determine the exact linear communication complexity, i.e., the communication complexity when the communication and SK are restricted to be linear functions of the randomness available at the terminals.
Resumo:
We describe our novel LED communication infrastructure and demonstrate its scalability across platforms. Our system achieves 50 kilo bits per second on very simple SoCs and scales to megabits bits per second rates on dual processor based mobile phone platforms.