927 resultados para duration, functional delta method, gamma kernel, hazard rate.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

STUDY QUESTION. Are significant abnormalities in outward (K+) conductance and resting membrane potential (Vm) present in the spermatozoa of patients undertaking IVF and ICSI and if so, what is their functional effect on fertilization success? SUMMARY ANSWER. Negligible outward conductance (≈5% of patients) or an enhanced inward conductance (≈4% of patients), both of which caused depolarization of Vm, were associated with a low rate of fertilization following IVF. WHAT IS KNOWN ALREADY. Sperm-specific potassium channel knockout mice are infertile with defects in sperm function, suggesting that these channels are essential for fertility. These observations suggest that malfunction of K+ channels in human spermatozoa might contribute significantly to the occurrence of subfertility in men. However, remarkably little is known of the nature of K+ channels in human spermatozoa or the incidence and functional consequences of K+ channel defects. STUDY DESIGN, SIZE AND DURATION. Spermatozoa were obtained from healthy volunteer research donors and subfertile IVF and ICSI patients attending a hospital assisted reproductive techniques clinic between May 2013 and December 2015. In total, 40 IVF patients, 41 ICSI patients and 26 normozoospermic donors took part in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS. Samples were examined using electrophysiology (whole-cell patch clamping). Where abnormal electrophysiological characteristics were identified, spermatozoa were further examined for Ca2+ influx induced by progesterone and penetration into viscous media if sufficient sample was available. Full exome sequencing was performed to specifically evaluate potassium calcium-activated channel subfamily M α 1 (KCNMA1), potassium calcium-activated channel subfamily U member 1 (KCNU1) and leucine-rich repeat containing 52 (LRRC52) genes and others associated with K+ signalling. In IVF patients, comparison with fertilization rates was done to assess the functional significance of the electrophysiological abnormalities. MAIN RESULTS AND THE ROLE OF CHANCE. Patch clamp electrophysiology was used to assess outward (K+) conductance and resting membrane potential (Vm) and signalling/motility assays were used to assess functional characteristics of sperm from IVF and ICSI patient samples. The mean Vm and outward membrane conductance in sperm from IVF and ICSI patients were not significantly different from those of control (donor) sperm prepared under the same conditions, but variation between individuals was significantly greater (P< 0.02) with a large number of outliers (>25%). In particular, in ≈10% of patients (7/81), we observed either a negligible outward conductance (4 patients) or an enhanced inward current (3 patients), both of which caused depolarization of Vm. Analysis of clinical data from the IVF patients showed significant association of depolarized Vm (≥0 mV) with low fertilization rate (P= 0.012). Spermatozoa with electrophysiological abnormities (conductance and Vm) responded normally to progesterone with elevation of [Ca2+]i and penetration of viscous medium, indicating retention of cation channel of sperm (CatSper) channel function. LIMITATIONS, REASONS FOR CAUTION. For practical, technical, ethical and logistical reasons, we could not obtain sufficient additional semen samples from men with conductance abnormalities to establish the cause of the conductance defects. Full exome sequencing was only available in two men with conductance defects. WIDER IMPLICATIONS OF THE FINDINGS. These data add significantly to the understanding of the role of ion channels in human sperm function and its impact on male fertility. Impaired potassium channel conductance (Gm) and/or Vm regulation is both common and complex in human spermatozoa and importantly is associated with impaired fertilization capacity when the Vm of cells is completely depolarized.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe here a patient with a clinical and molecular diagnosis of recombinase activating gene 1-deficient (RAG1-deficient) SCID, who produced specific antibodies despite minimal B cell numbers. Memory B cells were detected and antibodies were produced not only against some vaccines and infections, but also against autoantigens. The patient had severely reduced levels of oligoclonal T cells expressing the alphabeta TCR but surprisingly normal numbers of T cells expressing the gammadelta TCR. Analysis at a clonal level and TCR complementarity-determining region-3 spectratyping for gammadelta T cells revealed a diversified oligoclonal repertoire with predominance of cells expressing a gamma4-delta3 TCR. Several gammadelta T cell clones displayed reactivity against CMV-infected cells. These observations are compatible with 2 non-mutually exclusive explanations for the gammadelta T cell predominance: a developmental advantage and infection-triggered, antigen-driven peripheral expansion. The patient carried the homozygous hypomorphic R561H RAG1 mutation leading to reduced V(D)J recombination but lacked all clinical features characteristic of Omenn syndrome. This report describes a new phenotype of RAG deficiency and shows that the ability to form specific antibodies does not exclude the diagnosis of SCID.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Limb, trunk, and body weight measurements were obtained for growth series of Milne-Edwards's diademed sifaka, Propithecus diadema edwardsi, and the golden-crowned sifaka, Propithecus tattersalli. Similar measures were obtained also for primarily adults of two subspecies of the western sifaka: Propithecus verreauxi coquereli, Coquerel's sifaka, and Propithecus verreauxi verreauxi, Verreaux's sifaka. Ontogenetic series for the larger-bodied P. d. edwardsi and the smaller-bodied P. tattersalli were compared to evaluate whether species-level differences in body proportions result from the differential extension of common patterns of relative growth. In bivariate plots, both subspecies of P. verreauxi were included to examine whether these taxa also lie along a growth trajectory common to all sifakas. Analyses of the data indicate that postcranial proportions for sifakas are ontogenetically scaled, much as demonstrated previously with cranial dimensions for all three species (Ravosa, 1992). As such, P. d. edwardsi apparently develops larger overall size primarily by growing at a faster rate, but not for a longer duration of time, than P. tattersalli and P. verreauxi; this is similar to results based on cranial data. A consideration of Malagasy lemur ecology suggests that regional differences in forage quality and resource availability have strongly influenced the evolutionary development of body-size variation in sifakas. On one hand, the rainforest environment of P. d. edwardsi imposes greater selective pressures for larger body size than the dry-forest environment of P. tattersalli and P. v. coquereli, or the semi-arid climate of P. v. verreauxi. On the other hand, as progressively smaller-bodied adult sifakas are located in the east, west, and northwest, this apparently supports suggestions that adult body size is set by dry-season constraints on food quality and distribution (i.e., smaller taxa are located in more seasonal habitats such as the west and northeast). Moreover, the fact that body-size differentiation occurs primarily via differences in growth rate is also due apparently to differences in resource seasonality (and juvenile mortality risk in turn) between the eastern rainforest and the more temperate northeast and west. Most scaling coefficients for both arm and leg growth range from slight negative allometry to slight positive allometry. Given the low intermembral index for sifakas, which is also an adaptation for propulsive hindlimb-dominated jumping, this suggests that differences in adult limb proportions are largely set prenatally rather than being achieved via higher rates of postnatal hindlimb growth.(ABSTRACT TRUNCATED AT 400 WORDS)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Controversies exist regarding the indications for unicompartmental knee arthroplasty. The objective of this study is to report the mid-term results and examine predictors of failure in a metal-backed unicompartmental knee arthroplasty design. METHODS: At a mean follow-up of 60 months, 80 medial unicompartmental knee arthroplasties (68 patients) were evaluated. Implant survivorship was analyzed using Kaplan-Meier method. The Knee Society objective and functional scores and radiographic characteristics were compared before surgery and at final follow-up. A Cox proportional hazard model was used to examine the association of patient's age, gender, obesity (body mass index > 30 kg/m2), diagnosis, Knee Society scores and patella arthrosis with failure. RESULTS: There were 9 failures during the follow up. The mean Knee Society objective and functional scores were respectively 49 and 48 points preoperatively and 95 and 92 points postoperatively. The survival rate was 92% at 5 years and 84% at 10 years. The mean age was younger in the failure group than the non-failure group (p < 0.01). However, none of the factors assessed was independently associated with failure based on the results from the Cox proportional hazard model. CONCLUSION: Gender, pre-operative diagnosis, preoperative objective and functional scores and patellar osteophytes were not independent predictors of failure of unicompartmental knee implants, although high body mass index trended toward significance. The findings suggest that the standard criteria for UKA may be expanded without compromising the outcomes, although caution may be warranted in patients with very high body mass index pending additional data to confirm our results. LEVEL OF EVIDENCE: IV.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dehydrogenation of 1,2,3,4-tetrahydrocarbazole (THCZ) to form carbazole (CZ) over supported palladium catalysts was examined in the presence of hydrogen acceptors. As expected, liquid hydrogen acceptors increased the rate of reaction but, importantly, gaseous hydrogen acceptors also have been used. Ethene, propene, and but-1-ene showed up to a fivefold increase in the rate of dehydrogenation. Moreover, compared with the analogous liquid systems, the gaseous alternatives are a potentially more economic method of enhancing the activity and provide a simpler workup. The mechanism for the increase in rate was examined by density functional theory calculations, which showed that the propene hydrogenation competes effectively with the back-hydrogenation of the intermediates formed during the THCZ dehydrogenation, resulting in a shift in the equilibrium toward to the formation of CZ. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Massively parallel networks of highly efficient, high performance Single Instruction Multiple Data (SIMD) processors have been shown to enable FPGA-based implementation of real-time signal processing applications with performance and
cost comparable to dedicated hardware architectures. This is achieved by exploiting simple datapath units with deep processing pipelines. However, these architectures are highly susceptible to pipeline bubbles resulting from data and control hazards; the only way to mitigate against these is manual interleaving of
application tasks on each datapath, since no suitable automated interleaving approach exists. In this paper we describe a new automated integrated mapping/scheduling approach to map algorithm tasks to processors and a new low-complexity list scheduling technique to generate the interleaved schedules. When applied to a spatial Fixed-Complexity Sphere Decoding (FSD) detector
for next-generation Multiple-Input Multiple-Output (MIMO) systems, the resulting schedules achieve real-time performance for IEEE 802.11n systems on a network of 16-way SIMD processors on FPGA, enable better performance/complexity balance than current approaches and produce results comparable to handcrafted implementations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Time-dependent density-functional theory is a rather accurate and efficient way to compute electronic excitations for finite systems. However, in the macroscopic limit (systems of increasing size), for the usual adiabatic random-phase, local-density, or generalized-gradient approximations, one recovers the Kohn-Sham independent-particle picture, and thus the incorrect band gap. To clarify this trend, we investigate the macroscopic limit of the exchange-correlation kernel in such approximations by means of an algebraical analysis complemented with numerical studies of a one-dimensional tight-binding model. We link the failure to shift the Kohn-Sham spectrum of these approximate kernels to the fact that the corresponding operators in the transition space act only on a finite subspace.