952 resultados para digitised collection of course materials
Resumo:
Signatur des Originals: S 36/F12277
Resumo:
Signatur des Originals: S 36/F12278
Resumo:
Signatur des Originals: S 36/F12279
Resumo:
Signatur des Originals: S 36/F12280
Resumo:
Signatur des Originals: S 36/F12281
Resumo:
Signatur des Originals: S 36/F12282
Resumo:
Signatur des Originals: S 36/F12283
Resumo:
Signatur des Originals: S 36/F12284
Resumo:
The chapbooks created in the year ending in June 2012 include eleven themed collections and three installments of “In Thirteen Moons,” which didn’t get completed till that fall. This Wildest Year brings together the poems of the eleven themed chapbooks, each as a separate chapter. I have e-published this book for three reasons. First, the chapbooks have all been printed in very limited runs, and few copies remain to be shared with friends, old and new. Second, by ordering the chapters more or less chronologically, one can more easily see themes unfold and new connections made. And finally, this e-book is a bit of an experiment, allowing me to develop skills in self-publishing and graphic design. I hope you will find it to be a successful experiment.
Resumo:
Chemical analyses were performed on seveteen manganese nodules collected from the Pacific Ocean floor. The results were discussed compared with the previous data on the manganese nodules. Minerals were found to be todorokite, delta-MnO2 and other silicates, montmorillonite, illite, phillipsite and alpha-SiO2. Average composition shows that copper is concentrated on the deep sea nodules more than the shallow ones, and that the todorokite rich nodules contain more copper and nickel than the delta-MnO2 rich ones.
Resumo:
This is a technical description in html format of simple fortran programs for Macintosh for the morphometric analysis of tests planktonic foraminifera under reflected light, with special focus on the Neogene group of Globorotalia menardii. The second part of this report gives information and performance tests about the development of AMOR (Automated Measurement system for the mORphometry of microfossils). AMOR is Windows based and helps to orientate and collect digital images of menardiform globorotalids. The above fortran programs may be useful to extract and analyze some morphometric parameters from images collected with AMOR. After unzipping the archive file please open the Start.html file using a common web browser like firefox. In case of any questions or problems, please contact Michael W. Knappertsbusch (mailto:michael.knappertsbusch@unibas.ch).
Resumo:
This data set contains a time series of plant height measurements (vegetative and reproductive) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In addition, data on species specific plant heights for the main experiment are available from 2002. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Plant height was recorded, generally, twice a year just before biomass harvest (during peak standing biomass in late May and in late August). Methodologies of measuring height have varied somewhat over the years. In earlier year the streched plant height was measured, while in later years the standing height without streching the plant was measured. Vegetative height was measured either as the height of the highest leaf or as the length of the main axis of non-flowering plants. Regenerating height was measured either as the height of the highest flower on a plant or as the height of the main axis of flowering. Sampled plants were either randomly selected in the core area of plots or along transects in defined distances. For details refer to the description of individual years. Starting in 2006, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details in the general description of the Jena Experiment) were sampled. 2. Species specific plant height was recorded two times in 2002: in late July (vegetative height) and just before biomass harvest during peak standing biomass in late August (vegetative and regenerative height). For each plot and each sown species in the species pool, 3 plant individuals (if present) from the central area of the plots were randomly selected and used to measure vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) as stretched height. Provided are the means over the three measuremnts per plant species per plot.
Resumo:
This data set contains three time series of measurements of soil carbon (particular and dissolved) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Particulate soil carbon: Stratified soil sampling was performed every two years since before sowing in April 2002 and was repeated in April 2004, 2006 and 2008 to a depth of 30 cm segmented to a depth resolution of 5 cm giving six depth subsamples per core. Total carbon concentration was analyzed on ball-milled subsamples by an elemental analyzer at 1150°C. Inorganic carbon concentration was measured by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon. 2. Particulate soil carbon (high intensity sampling): In one block of the Jena Experiment soil samples were taken to a depth of 1 m (segmented to a depth resolution of 5 cm giving 20 depth subsamples per core) with three replicates per block ever 5 years starting before sowing in April 2002. Samples were processed as for the more frequent sampling. 3. Dissolved organic carbon: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer. Annual mean values of DOC are provided.