958 resultados para diagnoses of plasma electron density
Resumo:
"These notes are the result of the author's lectures [sic] on plasma physics in the spring term of 1961 at the University of Miami."
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
"Prepared for the Air Force Ballistic Missile Division, Headquarters Air Research and Development Command, under contract AF 04 (647)-309, Thermonuclear Propulsion Research."
Resumo:
"AFCRL-68-0044."
Resumo:
Mode of access: Internet.
Resumo:
"To investigate and study all aspects of 'four-plus-one' apartment buildings in particular and high-density housing in general."
Resumo:
"Meteorology Division. Project 6670."
Resumo:
The Low-Density Lipoprotein Receptor (LDLR) gene is a cell surface receptor that plays an important role in cholesterol homeostasis. We investigated the (TA)n polymorphism in exon 18 of the LDLR gene on chromosome 19p13.2 performing an association analysis in 244 typical migraine-affected patients, 151 suffering from migraine with aura (MA), 96 with migraine without aura (MO) and 244 unaffected controls. The populations consisted of Caucasians only, and controls were age- and sex-matched. The results showed no significant difference between groups for allele frequency distributions of the (TA)n polymorphism even after separation of the migraine-affected individuals into subgroups of MA and MO affected patients. This is in contradiction to Mochi et al. [Mochi M, Cevoli S, Cortelli P, Pierangeli G, Scapoli C, Soriani S, Montagna P. Investigation of an LDLR gene polymorphism (19p13.2) in susceptibility to migrane without aura. J Neurol Sci 2003; 213 (1-2): 7-10.] who found a positive association of this variant with MO. Our study discusses possible differences between the two studies and extends this research by investigating circulating cholesterol levels in a migraine-affected population. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Sulfite-oxidizing molybdoenzymes convert the highly reactive and therefore toxic sulfite to sulfate and have been identified in insects, animals, plants, and bacteria. Although the well studied enzymes from higher animals serve to detoxify sulfite that arises from the catabolism of sulfur-containing amino acids, the bacterial enzymes have a central role in converting sulfite formed during dissimilatory oxidation of reduced sulfur compounds. Here we describe the structure of the Starkeya novella sulfite dehydrogenase, a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit, that reveals the molecular mechanism of intramolecular electron transfer in sulfite-oxidizing enzymes. The close approach of the two redox centers in the protein complex (Mo-Fe distance 16.6 angstrom) allows for rapid electron transfer via tunnelling or aided by the protein environment. The high resolution structure of the complex has allowed the identification of potential through-bond pathways for electron transfer including a direct link via Arg-55A and/or an aromatic-mediated pathway. A potential site of electron transfer to an external acceptor cytochrome c was also identified on the SorB subunit on the opposite side to the interaction with the catalytic SorA subunit.
Resumo:
Electron-multiplying charge coupled devices promise to revolutionize ultrasensitive optical imaging. The authors present a simple methodology allowing reliable measurement of camera characteristics and statistics of single-electron events, compare the measurements to a simple theoretical model, and report camera performance in a truly photon-counting regime that eliminates the excess noise related to fluctuations of the multiplication gain.
Resumo:
Expansion of the capillary network, or angiogenesis, occurs following endurance training. This process, which is reliant on the presence of VEGF (vascular endothelial growth factor), is an adaptation to a chronic mismatch between oxygen demand and supply. Patients with IC (intermittent claudication) experience pain during exercise associated with an inadequate oxygen delivery to the muscles. Therefore the aims of the present study were to examine the plasma VEGF response to acute exercise, and to establish whether exercise training alters this response in patients with IC. In Part A, blood was collected from patients with IC (n = 18) before and after (+ 20 and + 60 min post-exercise) a maximal walking test to determine the plasma VEGF response to acute exercise. VEGF was present in the plasma of patients (45.11 +/- 29.96 pg/ml) and was unchanged in response to acute exercise. Part B was a training study to determine whether exercise training altered the VEGF response to acute exercise. Patients were randomly assigned to a treatment group (TMT; n = 7) that completed 6 weeks of high-intensity treadmill training, or to a control group (CON; n = 6). All patients completed a maximal walking test before and after the intervention, with blood samples drawn as for Part A. Training had no effect on plasma VEGF at rest or in response to acute exercise, despite a significant increase in maximal walking time in the TMT group (915 + 533 to 1206 + 500 s; P = 0.009) following the intervention. The absence of a change in plasma VEGF may reflect altered VEGF binding at the endothelium, although this cannot be confirmed by the present data.