415 resultados para dexamethasone


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucocorticoids exert multiple anti-inflammatory activities, one of which is the inhibition of transcription dependent on the nuclear factor (NF)-κB. It has been suggested that the effect of dexamethasone (DEX), a glucocorticoid analog, is attributed to an increased production of the inhibitory IκB molecule, which in turn would bind and remove activated, DNA-bound NF-κB complexes in the cell nucleus. Upon investigating DEX-mediated repression of interleukin-6 expression induced by tumor necrosis factor, DEX treatment was found to act directly on NF-κB-dependent transcription, without changing the expression level of IκB. Neither the mRNA of IκB nor the protein was significantly elevated by a combined treatment with tumor necrosis factor and DEX of murine endothelial or fibroblast cells. The DNA-binding activity of induced NF-κB also remained unchanged after stimulation of cells with DEX. Evidence for a direct nuclear mechanism of action was obtained by analysis of cell lines stably expressing a fusion protein between the DNA-binding domain of the yeast Gal4 protein and the transactivating p65 subunit of NF-κB. Expression of a Gal4-dependent luciferase reporter gene activated by this nuclear fusion protein was also strongly repressed after addition of DEX. Because the DNA-binding activity of the Gal4 fusion protein was not affected by DEX, it can be concluded that the reduction of gene activation was caused by interference of the activated glucocorticoid receptor with the transactivation potential of the NF-κB p65 subunit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence indicates that the modulatory effects of the adrenergic stress hormone epinephrine as well as several other neuromodulatory systems on memory storage are mediated by activation of β-adrenergic mechanisms in the amygdala. In view of our recent findings indicating that the amygdala is involved in mediating the effects of glucocorticoids on memory storage, the present study examined whether the glucocorticoid-induced effects on memory storage depend on β-adrenergic activation within the amygdala. Microinfusions (0.5 μg in 0.2 μl) of either propranolol (a nonspecific β-adrenergic antagonist), atenolol (a β1-adrenergic antagonist), or zinterol (a β2-adrenergic antagonist) administered bilaterally into the basolateral nucleus of the amygdala (BLA) of male Sprague–Dawley rats 10 min before training blocked the enhancing effect of posttraining systemic injections of dexamethasone (0.3 mg/kg) on 48-h memory for inhibitory avoidance training. Infusions of these β-adrenergic antagonists into the central nucleus of the amygdala did not block the dexamethasone-induced memory enhancement. Furthermore, atenolol (0.5 μg) blocked the memory-enhancing effects of the specific glucocorticoid receptor (GR or type II) agonist RU 28362 infused concurrently into the BLA immediately posttraining. These results strongly suggest that β-adrenergic activation is an essential step in mediating glucocorticoid effects on memory storage and that the BLA is a locus of interaction for these two systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apoptosis induced in myeloid leukemic cells by wild-type p53 was suppressed by different cleavage-site directed protease inhibitors, which inhibit interleukin-1 beta-converting enzyme-like, granzyme B and cathepsins B and L proteases. Apoptosis was also suppressed by the serine and cysteine protease inhibitor N-tosyl-L-phenylalanine chloromethylketone (TPCK) [corrected], but not by other serine or cysteine protease inhibitors including N alpha-p-tosyl-L-lysine chloromethylketone (TLCK), E64, pepstatin A, or chymostatin. Protease inhibitors suppressed induction of apoptosis by gamma-irradiation and cycloheximide but not by doxorubicin, vincristine, or withdrawal of interleukin 3 from interleukin 3-dependent 32D non-malignant myeloid cells. Induction of apoptosis in normal thymocytes by gamma-irradiation or dexamethasone was also suppressed by the cleavage-site directed protease inhibitors, but in contrast to the myeloid leukemic cells apoptosis in thymocytes was suppressed by TLCK but not by TPCK. The results indicate that (i) inhibitors of interleukin-1 beta-converting enzyme-like proteases and some other protease inhibitors suppressed induction of apoptosis by wild-type p53 and certain p53-independent pathways of apoptosis; (ii) the protease inhibitors together with the cytokines interleukin 6 and interferon-gamma or the antioxidant butylated hydroxyanisole gave a cooperative protection against apoptosis; (iii) these protease inhibitors did not suppress induction of apoptosis by some cytotoxic agents or by viability-factor withdrawal from 32D cells, whereas these pathways of apoptosis were suppressed by cytokines; (iv) there are cell type differences in the proteases involved in apoptosis; and (v) there are multiple pathways leading to apoptosis that can be selectively induced and suppressed by different agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have cloned a novel member of the nuclear receptor superfamily. The cDNA of clone 29 was isolated from a rat prostate cDNA library and it encodes a protein of 485 amino acid residues with a calculated molecular weight of 54.2 kDa. Clone 29 protein is unique in that it is highly homologous to the rat estrogen receptor (ER) protein, particularly in the DNA-binding domain (95%) and in the C-terminal ligand-binding domain (55%). Expression of clone 29 in rat tissues was investigated by in situ hybridization and prominent expression was found in prostate and ovary. In the prostate clone 29 is expressed in the epithelial cells of the secretory alveoli, whereas in the ovary the granuloma cells in primary, secondary, and mature follicles showed expression of clone 29. Saturation ligand-binding analysis of in vitro synthesized clone 29 protein revealed a single binding component for 17beta-estradiol (E2) with high affinity (Kd= 0.6 nM). In ligand-competition experiments the binding affinity decreased in the order E2 > diethylstilbestrol > estriol > estrone > 5alpha-androstane-3beta,17beta-diol >> testosterone = progesterone = corticosterone = 5alpha-androstane-3alpha,17beta-diol. In cotransfection experiments of Chinese hamster ovary cells with a clone 29 expression vector and an estrogen-regulated reporter gene, maximal stimulation (about 3-fold) of reporter gene activity was found during incubation with 10 nM of E2. Neither progesterone, testosterone, dexamethasone, thyroid hormone, all-trans-retinoic acid, nor 5alpha-androstane-3alpha,I7beta-diol could stimulate reporter gene activity, whereas estrone and 5alpha-androstane-3beta,17beta-diol did. We conclude that clone 29 cDNA encodes a novel rat ER, which we suggest be named rat ERbeta to distinguish it from the previously cloned ER (ERalpha) from rat uterus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intron of the corticotropin-releasing hormone (corticoliberin; CRH) gene contains a sequence of over 100 bp of alternating purine/pyrimidine residues. We have used binding of a Z-DNA-specific antibody in metabolically active, permeabilized nuclei to study the formation of Z-DNA in this sequence at various levels of transcription. In the NPLC human primary liver carcinoma cell line, activation of cAMP-dependent pathways increased the level of transcription, while adding glucocorticoids inhibited transcription of the CRH gene. These cells respond in a manner similar to hypothalamic cells. Z-DNA formation in this sequence was detected at the basal level of transcription, as well as after stimulation with forskolin. Inhibition of transcription by dexamethasone abolished Z-DNA formation. Z-DNA formation in the WC gene (c-myc) was affected differently in the same experiment. Thus, changes in Z-DNA formation in the CRH gene are gene specific and are linked to the transcription of the gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In rats and humans, metabolic acidosis stimulates protein degradation and glucocorticoids have been implicated in this response. To evaluate the importance of glucocorticoids in stimulating proteolysis, we measured protein degradation in BC3H1 myocytes cultured in 12% serum. Acidification accelerated protein degradation but dexamethasone did not augment this response. To reduce the influence of glucocorticoids and other hormones and cytokines in 12% serum that could mediate proteolysis, we studied BC3H1 myocytes maintained in only 1% serum. Acidification of the medium or addition of dexamethasone at pH 7.4 did not significantly increase protein degradation, while acidification plus dexamethasone accelerated proteolysis. The steroid receptor antagonist RU 486 prevented this proteolytic response. Acidification of the medium with 1% serum did increase the mRNAs for ubiquitin and the C2 proteasome subunit, but when dexamethasone was added the mRNAs were increased significantly more. The steroid-receptor antagonist RU 486 suppressed this response to the addition of dexamethasone but the mRNAs remained at the levels measured in cells at pH 7.1 alone. Thus, acidification alone can increase the mRNAs of the ubiquitin-proteasome proteolytic pathway, but both acidosis and glucocorticoids are required to stimulate protein degradation. Since these changes occur without adding cytokines or other hormones, we conclude that the proteolytic response to acidification requires glucocorticoids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously, a hypomorphic mutation in CD18 was generated by gene targeting, with homozygous mice displaying increased circulating neutrophil counts, defects in the response to chemically induced peritonitis, and delays in transplantation rejection. When this mutation was backcrossed onto the PL/J inbred strain, virtually all homozygous mice developed a chronic inflammatory skin disease with a mean age of onset of 11 weeks after birth. The disease was characterized by erythema, hair loss, and the development of scales and crusts. The histopathology revealed hyperplasia of the epidermis, subcorneal microabscesses, orthohyperkeratosis, parakeratosis, and lymphocyte exocytosis, which are features in common with human psoriasis and other hyperproliferative inflammatory skin disorders. Repetitive cultures failed to demonstrate bacterial or fungal organisms potentially involved in the pathogenesis of this disease, and the dermatitis resolved rapidly after subcutaneous administration of dexamethasone. Homozygous mutant mice on a (PL/J x C57BL/6J)F1 background did not develop the disease and backcross experiments suggest that a small number of genes (perhaps as few as one), in addition to CD18, determine susceptibility to the disorder. This phenotype provides a model for inflammatory skin disorders, may have general relevance to polygenic human inflammatory diseases, and should help to identify genes that interact with the beta2 integrins in inflammatory processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The localization, trafficking, and fluorescence of Aequorea green fluorescent protein (GFP) in cultured vertebrate cells transiently transfected with GFP cDNA were studied. Fluorescence of GFP in UV light was found to be strongest when cells were incubated at 30 degrees C but was barely visible at an incubation temperature of 37 degrees C. COS-1 cells, primary chicken embryonic retina cells, and carp epithelial cells were fluorescently labeled under these conditions. GFP was distributed uniformly throughout the cytoplasm and nucleus independent of cell type examined. When GFP was fused to PML protooncogene product, fluorescence was detected in a unique nuclear organelle pattern indistinguishable from that of PML protein, showing the potential use of GFP as a fluorescent tag. To analyze both function and intracellular trafficking of proteins fused to GFP, a GFP-human glucocorticoid receptor fusion construct was prepared. The GFP-human glucocorticoid receptor efficiently transactivated the mouse mammary tumor virus promoter in response to dexamethasone at 30 degrees C but not at 37 degrees C, indicating that temperature is important, even for function of the GFP fusion protein. The dexamethasone-induced translocation of GFP-human glucocorticoid receptor from cytoplasm to nucleus was complete within 15 min; the translocation could be monitored in a single living cell in real time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aspirin [acetylsalicylic acid (ASA)], along with its analgesic-antipyretic uses, is now also being considered for cardiovascular protection and treatments in cancer and human immunodeficiency virus infection. Although many of ASA's pharmacological actions are related to its ability to inhibit prostaglandin and thromboxane biosynthesis, some of its beneficial therapeutic effects are not completely understood. Here, ASA triggered transcellular biosynthesis of a previously unrecognized class of eicosanoids during coincubations of human umbilical vein endothelial cells (HUVEC) and neutrophils [polymorphonuclear leukocytes (PMN)]. These eicosanoids were generated with ASA but not by indomethacin, salicylate, or dexamethasone. Formation was enhanced by cytokines (interleukin 1 beta) that induced the appearance of prostaglandin G/H synthase 2 (PGHS-2) but not 15-lipoxygenase, which initiates their biosynthesis from arachidonic acid in HUVEC. Costimulation of HUVEC/PMN by either thrombin plus the chemotactic peptide fMet-Leu-Phe or phorbol 12-myristate 13-acetate or ionophore A23187 leads to the production of these eicosanoids from endogenous sources. Four of these eicosanoids were also produced when PMN were exposed to 15R-HETE [(15R)-15-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid] and an agonist. Physical methods showed that the class consists of four tetraene-containing products from arachidonic acid that proved to be 15R-epimers of lipoxins. Two of these compounds (III and IV) were potent inhibitors of leukotriene B4-mediated PMN adhesion to HUVEC, with compound IV [(5S,6R,15R)-5,6,15-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoi c acid; 15-epilipoxin A4] active in the nanomolar range. These results demonstrate that ASA evokes a unique class of eicosanoids formed by acetylated PGHS-2 and 5-lipoxygenase interactions, which may contribute to the therapeutic impact of this drug. Moreover, they provide an example of a drug's ability to pirate endogenous biosynthetic mechanisms to trigger new mediators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programmed cell death (apoptosis) is an intrinsic part of organismal development and aging. Here we report that many nonsteroidal antiinflammatory drugs (NSAIDs) cause apoptosis when applied to v-src-transformed chicken embryo fibroblasts (CEFs). Cell death was characterized by morphological changes, the induction of tissue transglutaminase, and autodigestion of DNA. Dexamethasone, a repressor of cyclooxygenase (COX) 2, neither induced apoptosis nor altered the NSAID effect. Prostaglandin E2, the primary eicosanoid made by CEFs, also failed to inhibit apoptosis. Expression of the protooncogene bcl-2 is very low in CEFs and is not altered by NSAID treatment. In contrast, p20, a protein that may protect against apoptosis when fibroblasts enter G0 phase, was strongly repressed. The NSAID concentrations used here transiently inhibit COXs. Nevertheless, COX-1 and COX-2 mRNAs and COX-2 protein were induced. In some cell types, then, chronic NSAID treatment may lead to increased, rather than decreased, COX activity and, thus, exacerbate prostaglandin-mediated inflammatory effects. The COX-2 transcript is a partially spliced and nonfunctional form previously described. Thus, these findings suggest that COXs and their products play key roles in preventing apoptosis in CEFs and perhaps other cell types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Opossum kidney OKP cells express an apical membrane Na+/H+ antiporter that is encoded by NHE-3 (for Na+/H+ exchanger 3) and is similar in many respects to the renal proximal tubule apical membrane Na+/H+ antiporter. Chronic incubation of OKP cells in acid medium for 24 hr increases Na+/H(+)-antiporter activity and NHE-3 mRNA abundance. The increase in Na+/H(+)-antiporter activity was not prevented by H7, a protein kinase C/protein kinase A inhibitor, but was prevented by herbimycin A, a tyrosine kinase inhibitor. Incubation of cells in acid medium increased c-src activity, and this was inhibited by herbimycin A. To determine the role of the src family of nonreceptor protein-tyrosine kinases, Csk (for carboxyl-terminal src kinase), a physiologic inhibitor of these kinases, was overexpressed in OKP cells. In three clones overexpressing csk, acid-induced increases in Na+/H(+)-antiporter activity and NHE-3 mRNA abundance were inhibited. In these clones, inhibition of acid activation of Na+/H(+)-antiporter activity paralleled inhibition of acid activation of c-src. Neither herbimycin A nor overexpression of csk inhibited dexamethasone-induced increases in Na+/H(+)-antiporter activity. These studies show that decreases in pH activate c-src and that the src family nonreceptor protein-tyrosine kinases play a key role in acid activation of NHE-3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The clonal rat pituitary cell line GH4C1 expresses the genes for several voltage-dependent potassium channels including Kv1.5 and Kv1.4. Dexamethasone, a glucocorticoid agonist, induces a slowly inactivating potassium current in these cells but does not alter the amplitude of a rapidly inactivating component of potassium current. We have found that the induction of the slowly inactivating current can be blocked by an antisense phosphorothioate deoxyoligonucleotide to the Kv1.5 mRNA sequence. In contrast, antisense deoxyoligonucleotides against Kv1.4 mRNA specifically decrease the expression of the dexamethasone-insensitive rapidly inactivating current. These results demonstrate the usefulness of antisense oligonucleotides in correlating potassium currents with specific potassium channel proteins in the cell types in which they are naturally expressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Screening a rat colon cDNA library for aldosterone-induced genes resulted in the molecular cloning of a cDNA whose corresponding mRNA is strongly induced in the colon by dexamethasone, aldosterone, and a low NaCl diet. A similar mRNA was detected in kidney papilla but not in brain, heart, or skeletal muscle. Xenopus laevis oocytes injected with cRNA synthesized from this clone, designated CHIF (channel-inducing factor), express a K(+)-specific channel activity. The biophysical, pharmacological, and regulatory characteristics of this channel are very similar to those reported before for IsK (minK). These include: slow (tau > 20 s) activation by membrane depolarization with a threshold potential above -50 mV, blockade by clofilium, inhibition by phorbol ester, and activation by 8-bromoadenosine 3',5'-cyclic monophosphate and high cytoplasmic Ca2+. The primary structure of this clone, however, shows no homology to IsK. Instead, CHIF exhibits > 50% similarity to two other short bitopic membrane proteins, phospholemman and the gamma subunit of Na+K(+)-ATPase. The data are consistent with the possibility that CHIF is a member of a family of transmembrane regulators capable of activating endogenous oocyte transport proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rat glucocorticoid receptor confers hormone-dependent transcriptional enhancement when expressed in yeast, thereby enabling the genetic identification of nonreceptor proteins that function in the hormone signal-transduction pathway. We isolated a yeast mutant, lem1, with increased sensitivity to dexamethasone and triamcinolone acetonide; responsiveness to a third agonist, deoxycorticosterone, is unaffected. Cloning of wild-type LEM1 revealed a putative transport protein of the ATP-binding cassette family. Dexamethasone accumulation is increased in lem1 cells, suggesting that wild-type LEM1 decreases dexamethasone potency by exporting this ligand. LEM1 appears to affect certain steroids and not others. We propose that transporters like LEM1 can selectively modulate the intracellular levels of steroid hormones. Differential activities of such transporters in mammalian cells might regulate hormone availability and thereby hormone signaling in a cell-type specific manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hipodermóclise (HDC) é uma importante técnica alternativa para a administração de medicamentos e fluidos pela via subcutânea. É usada com frequência para o controle dos sintomas em pacientes em cuidados paliativos com dificuldade de acesso venoso e que são incapazes de tolerar medicação oral. No entanto, raros estudos abordaram o uso da HDC de uma forma global, para reposição hidroeletrolítica e terapia medicamentosa, tanto na forma contínua quanto intermitente, observando detalhes e complicações do seu uso. Os objetivos deste estudo incluíram caracterizar o uso da HDC para administração de medicamentos, soluções e eletrólitos e avaliar as possíveis complicações locais, identificando também outros fatores que influenciam sua ocorrência. Estudo observacional prospectivo com coleta de dados em prontuário e acompanhamento diário de pacientes internados com câncer avançado, da equipe de Cuidados Paliativos do Instituto do Câncer do Estado de São Paulo (ICESP) em uso de HDC, verificando local de punção, medicamentos administrados e possíveis complicações, acompanhando os detalhes de seu uso. A análise estatística não-paramétrica e método de regressão logística foram realizados. Foram acompanhados 99 pacientes com 243 punções, das quais 166 (68,3%) em coxa e 46 (18,9%) em abdome. Os medicamentos mais utilizados foram morfina em 122 (50,2%) punções, seguido de dipirona em 118 (48,6%) e dexametasona em 86 (35,4%). A solução mais prescrita foi a glicofisiológica em 38 (15,6%) punções, pelo seu aporte calórico. 13,6% das punções (33 de 243) tiveram complicações, sendo apenas seis casos maiores (edema). Complicações ocorreram mais frequentemente até o segundo dia da punção e foram associadas com o número (p=0,007) e o volume (p=0,042) de medicamentos administrados e também com a solução glicofisiológica (p=0,003) e os eletrólitos cloreto de potássio (p=0,037) e cloreto de sódio (p=0,013). Este estudo permitiu o conhecimento de fatores associados a complicações e propõe algumas recomendações, como: individualização da terapia, especialmente relacionada com o volume de escolha, número de medicamentos administrados e evitar a adição de eletrólitos na solução glicofisiológica