983 resultados para decision algorithm
Resumo:
Classical serological screening assays for Chagas' disease are time consuming and subjective. The objective of the present work is to evaluate the enzyme immuno-assay (ELISA) methodology and to propose an algorithm for blood banks to be applied to Chagas' disease. Seven thousand, nine hundred and ninety nine blood donor samples were screened by both reverse passive hemagglutination (RPHA) and indirect immunofluorescence assay (IFA). Samples reactive on RPHA and/or IFA were submitted to supplementary RPHA, IFA and complement fixation (CFA) tests. This strategy allowed us to create a panel of 60 samples to evaluate the ELISA methodology from 3 different manufacturers. The sensitivity of the screening by IFA and the 3 different ELISA's was 100%. The specificity was better on ELISA methodology. For Chagas disease, ELISA seems to be the best test for blood donor screening, because it showed high sensitivity and specificity, it is not subjective and can be automated. Therefore, it was possible to propose an algorithm to screen samples and confirm donor results at the blood bank.
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
This paper provides empirical evidence of the impact of life satisfaction on the individual intention to migrate. The impacts of individual characteristics and of country macroeconomic variables on the intention to migrate are analyzed jointly. Differently from other studies, we allow for life satisfaction to serve as a mediator between macroeconomic variables and the intention to migrate. Using the Eurobarometer Survey for 27 Central Eastern European (CEE) and Western European (non-CEE) countries, we find that people have a higher intention to migrate when dissatisfied with life. The socio-economic variables and macroeconomic conditions have an effect on the intention to migrate indirectly through life satisfaction. The impact of life satisfaction on the intention to migrate for middle-aged individuals with past experience of migration, low level of education, and with a low or average income from urban areas is higher in CEE countries than in non-CEE countries.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology, Neuroscience
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology, Computational Biology.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology, Neuroscience
Resumo:
Forest managers, stakeholders and investors want to be able to evaluate economic, environmental and social benefits in order to improve the outcomes of their decisions and enhance sustainable forest management. This research developed a spatial decision support system that provides: (1) an approach to identify the most beneficial locations for agroforestry projects based on the biophysical properties and evaluate its economic, social and environmental impact; (2) a tool to inform prospective investors and stakeholders of the potential and opportunities for integrated agroforestry management; (3) a simulation environment that enables evaluation via a dashboard with the opportunity to perform interactive sensitivity analysis for key parameters of the project; (4) a 3D interactive geographic visualization of the economic, environmental and social outcomes, which facilitate understanding and eases planning. Although the tool and methodology presented are generic, a case study was performed in East Kalimantan, Indonesia. For the whole study area, it was simulated the most suitable location for three different plantation schemes: monoculture of timber, a specific recipe (cassava, banana and sugar palm) and different recipes per geographic unit. The results indicate that a mixed cropping plantation scheme, with different recipes applied to the most suitable location returns higher economic, environmental and social benefits.
Resumo:
Diffusion Kurtosis Imaging (DKI) is a fairly new magnetic resonance imag-ing (MRI) technique that tackles the non-gaussian motion of water in biological tissues by taking into account the restrictions imposed by tissue microstructure, which are not considered in Diffusion Tensor Imaging (DTI), where the water diffusion is considered purely gaussian. As a result DKI provides more accurate information on biological structures and is able to detect important abnormalities which are not visible in standard DTI analysis. This work regards the development of a tool for DKI computation to be implemented as an OsiriX plugin. Thus, as OsiriX runs under Mac OS X, the pro-gram is written in Objective-C and also makes use of Apple’s Cocoa framework. The whole program is developed in the Xcode integrated development environ-ment (IDE). The plugin implements a fast heuristic constrained linear least squares al-gorithm (CLLS-H) for estimating the diffusion and kurtosis tensors, and offers the user the possibility to choose which maps are to be generated for not only standard DTI quantities such as Mean Diffusion (MD), Radial Diffusion (RD), Axial Diffusion (AD) and Fractional Anisotropy (FA), but also DKI metrics, Mean Kurtosis (MK), Radial Kurtosis (RK) and Axial Kurtosis (AK).The plugin was subjected to both a qualitative and a semi-quantitative analysis which yielded convincing results. A more accurate validation pro-cess is still being developed, after which, and with some few minor adjust-ments the plugin shall become a valid option for DKI computation
Resumo:
Rupture of aortic aneurysms (AA) is a major cause of death in the Western world. Currently, clinical decision upon surgical intervention is based on the diameter of the aneurysm. However, this method is not fully adequate. Noninvasive assessment of the elastic properties of the arterial wall can be a better predictor for AA growth and rupture risk. The purpose of this study is to estimate mechanical properties of the aortic wall using in vitro inflation testing and 2D ultrasound (US) elastography, and investigate the performance of the proposed methodology for physiological conditions. Two different inflation experiments were performed on twelve porcine aortas: 1) a static experiment for a large pressure range (0 – 140 mmHg); 2) a dynamic experiment closely mimicking the in vivo hemodynamics at physiological pressures (70 – 130 mmHg). 2D raw radiofrequency (RF) US datasets were acquired for one longitudinal and two cross-sectional imaging planes, for both experiments. The RF-data were manually segmented and a 2D vessel wall displacement tracking algorithm was applied to obtain the aortic diameter–time behavior. The shear modulus G was estimated assuming a Neo-Hookean material model. In addition, an incremental study based on the static data was performed to: 1) investigate the changes in G for increasing mean arterial pressure (MAP), for a certain pressure difference (30, 40, 50 and 60 mmHg); 2) compare the results with those from the dynamic experiment, for the same pressure range. The resulting shear modulus G was 94 ± 16 kPa for the static experiment, which is in agreement with literature. A linear dependency on MAP was found for G, yet the effect of the pressure difference was negligible. The dynamic data revealed a G of 250 ± 20 kPa. For the same pressure range, the incremental shear modulus (Ginc) was 240 ± 39 kPa, which is in agreement with the former. In general, for all experiments, no significant differences in the values of G were found between different image planes. This study shows that 2D US elastography of aortas during inflation testing is feasible under controlled and physiological circumstances. In future studies, the in vivo, dynamic experiment should be repeated for a range of MAPs and pathological vessels should be examined. Furthermore, the use of more complex material models needs to be considered to describe the non-linear behavior of the vascular tissue.
Resumo:
Geographic information systems give us the possibility to analyze, produce, and edit geographic information. Furthermore, these systems fall short on the analysis and support of complex spatial problems. Therefore, when a spatial problem, like land use management, requires a multi-criteria perspective, multi-criteria decision analysis is placed into spatial decision support systems. The analytic hierarchy process is one of many multi-criteria decision analysis methods that can be used to support these complex problems. Using its capabilities we try to develop a spatial decision support system, to help land use management. Land use management can undertake a broad spectrum of spatial decision problems. The developed decision support system had to accept as input, various formats and types of data, raster or vector format, and the vector could be polygon line or point type. The support system was designed to perform its analysis for the Zambezi river Valley in Mozambique, the study area. The possible solutions for the emerging problems had to cover the entire region. This required the system to process large sets of data, and constantly adjust to new problems’ needs. The developed decision support system, is able to process thousands of alternatives using the analytical hierarchy process, and produce an output suitability map for the problems faced.
Resumo:
In the last few years, we have observed an exponential increasing of the information systems, and parking information is one more example of them. The needs of obtaining reliable and updated information of parking slots availability are very important in the goal of traffic reduction. Also parking slot prediction is a new topic that has already started to be applied. San Francisco in America and Santander in Spain are examples of such projects carried out to obtain this kind of information. The aim of this thesis is the study and evaluation of methodologies for parking slot prediction and the integration in a web application, where all kind of users will be able to know the current parking status and also future status according to parking model predictions. The source of the data is ancillary in this work but it needs to be understood anyway to understand the parking behaviour. Actually, there are many modelling techniques used for this purpose such as time series analysis, decision trees, neural networks and clustering. In this work, the author explains the best techniques at this work, analyzes the result and points out the advantages and disadvantages of each one. The model will learn the periodic and seasonal patterns of the parking status behaviour, and with this knowledge it can predict future status values given a date. The data used comes from the Smart Park Ontinyent and it is about parking occupancy status together with timestamps and it is stored in a database. After data acquisition, data analysis and pre-processing was needed for model implementations. The first test done was with the boosting ensemble classifier, employed over a set of decision trees, created with C5.0 algorithm from a set of training samples, to assign a prediction value to each object. In addition to the predictions, this work has got measurements error that indicates the reliability of the outcome predictions being correct. The second test was done using the function fitting seasonal exponential smoothing tbats model. Finally as the last test, it has been tried a model that is actually a combination of the previous two models, just to see the result of this combination. The results were quite good for all of them, having error averages of 6.2, 6.6 and 5.4 in vacancies predictions for the three models respectively. This means from a parking of 47 places a 10% average error in parking slot predictions. This result could be even better with longer data available. In order to make this kind of information visible and reachable from everyone having a device with internet connection, a web application was made for this purpose. Beside the data displaying, this application also offers different functions to improve the task of searching for parking. The new functions, apart from parking prediction, were: - Park distances from user location. It provides all the distances to user current location to the different parks in the city. - Geocoding. The service for matching a literal description or an address to a concrete location. - Geolocation. The service for positioning the user. - Parking list panel. This is not a service neither a function, is just a better visualization and better handling of the information.
Resumo:
A foremost dispute that persists on the contemporary world’s agenda is change. The on-going social/technological/economic changes create a competitive and challenging environment for companies to endure. To benefit from these changes, world economies partially depend on emerging Small and Medium Enterprises (SMEs) and their adaptability skills, and subsequently the development of an integrated capability to innovate has become the prime strategy for most of SMEs to subsist and grow. However, innovation and change are always somewhat bonded to an inherent risk development, which subsequently brings on the necessity of a revision of risk management approaches in innovative processes, whose importance SMEs tend to disregard. Additionally, little efforts have been made to improve and create empirical models, metrics and tools to assist SMEs managing latent risks in their innovative projects. This work seeks to present and discuss a solution to support SMEs in engaging on systematic risk management practices, which consists on an integrated risk assessment and response support web-based tool - Spotrisk® - designed for SMEs. On the other hand, an inherent subjectivity is linked with risk management and identification processes, due to uncertainty trait of its nature, for each individual perceives situations according to his own idiosyncrasy, which brings complications in normalizing risk profiles and procedures. This essay aims to bring insights concerning the support in decision-making processes under uncertainty, by addressing issues related with the risk behavior character among individuals. To address such issues, subjects of neuroscience or psychology are explored and models to identify such character are proposed, as well as models to improve presented tool. This work attempts to go beyond the restrictive aim of endeavoring on technical improvement dissertation, and in embraces an exploratory conceptualization concerning micro, small and medium businesses’ traits regarding risk characters and project risk assessment tools.