881 resultados para data generation
Resumo:
With the advent of cheaper and faster DNA sequencing technologies, assembly methods have greatly changed. Instead of outputting reads that are thousands of base pairs long, new sequencers parallelize the task by producing read lengths between 35 and 400 base pairs. Reconstructing an organism’s genome from these millions of reads is a computationally expensive task. Our algorithm solves this problem by organizing and indexing the reads using n-grams, which are short, fixed-length DNA sequences of length n. These n-grams are used to efficiently locate putative read joins, thereby eliminating the need to perform an exhaustive search over all possible read pairs. Our goal was develop a novel n-gram method for the assembly of genomes from next-generation sequencers. Specifically, a probabilistic, iterative approach was utilized to determine the most likely reads to join through development of a new metric that models the probability of any two arbitrary reads being joined together. Tests were run using simulated short read data based on randomly created genomes ranging in lengths from 10,000 to 100,000 nucleotides with 16 to 20x coverage. We were able to successfully re-assemble entire genomes up to 100,000 nucleotides in length.
Resumo:
With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.
Resumo:
BACKGROUND: Several approaches can be used to determine the order of loci on chromosomes and hence develop maps of the genome. However, all mapping approaches are prone to errors either arising from technical deficiencies or lack of statistical support to distinguish between alternative orders of loci. The accuracy of the genome maps could be improved, in principle, if information from different sources was combined to produce integrated maps. The publicly available bovine genomic sequence assembly with 6x coverage (Btau_2.0) is based on whole genome shotgun sequence data and limited mapping data however, it is recognised that this assembly is a draft that contains errors. Correcting the sequence assembly requires extensive additional mapping information to improve the reliability of the ordering of sequence scaffolds on chromosomes. The radiation hybrid (RH) map described here has been contributed to the international sequencing project to aid this process. RESULTS: An RH map for the 30 bovine chromosomes is presented. The map was built using the Roslin 3000-rad RH panel (BovGen RH map) and contains 3966 markers including 2473 new loci in addition to 262 amplified fragment-length polymorphisms (AFLP) and 1231 markers previously published with the first generation RH map. Sequences of the mapped loci were aligned with published bovine genome maps to identify inconsistencies. In addition to differences in the order of loci, several cases were observed where the chromosomal assignment of loci differed between maps. All the chromosome maps were aligned with the current 6x bovine assembly (Btau_2.0) and 2898 loci were unambiguously located in the bovine sequence. The order of loci on the RH map for BTA 5, 7, 16, 22, 25 and 29 differed substantially from the assembled bovine sequence. From the 2898 loci unambiguously identified in the bovine sequence assembly, 131 mapped to different chromosomes in the BovGen RH map. CONCLUSION: Alignment of the BovGen RH map with other published RH and genetic maps showed higher consistency in marker order and chromosome assignment than with the current 6x sequence assembly. This suggests that the bovine sequence assembly could be significantly improved by incorporating additional independent mapping information.
Resumo:
Franches-Montagnes is the only native horse breed in Switzerland, therefore special efforts should be made for ensuring its survival. The objectives of this study were to characterize the structure of this population as well as genetic variability with pedigree data, conformation traits and molecular markers. Studies were focused to clarify if this population is composed of a heavy- and a light-type subpopulation. Extended pedigree records of 3-year-old stallions (n = 68) and mares (n = 108) were available. Evaluations of body conformation traits as well as pedigree data and molecular markers did not support the two-subpopulation hypothesis. The generation interval ranged from 7.8 to 9.3 years. The complete generation equivalent was high (>12). The number of effective ancestors varied between 18.9 and 20.1, whereof 50% of the genetic variability was attributed to seven of them. Genetic contribution of Warmblood horses ranged from 36% to 42% and that of Coldblood horses from 4% to 6%. The average inbreeding coefficient reached 6%. Inbreeding effective population size was 114.5 when the average increase of the inbreeding coefficient per year since 1910 was taken. Our results suggest that bottleneck situations occurred because of selection of a small number of sire lines. Promotion of planned matings between parents that are less related is recommended in order to avoid a reduction of the genetic diversity.
Resumo:
This paper describes a method for DRR generation as well as for volume gradients projection using hardware accelerated 2D texture mapping and accumulation buffering and demonstrates its application in 2D-3D registration of X-ray fluoroscopy to CT images. The robustness of the present registration scheme are guaranteed by taking advantage of a coarse-to-fine processing of the volume/image pyramids based on cubic B-splines. A human cadaveric spine specimen together with its ground truth was used to compare the present scheme with a purely software-based scheme in three aspects: accuracy, speed, and capture ranges. Our experiments revealed an equivalent accuracy and capture ranges but with much shorter registration time with the present scheme. More specifically, the results showed 0.8 mm average target registration error, 55 second average execution time per registration, and 10 mm and 10° capture ranges for the present scheme when tested on a 3.0 GHz Pentium 4 computer.
Resumo:
AIMS: To describe the procedural performance and 30-day outcomes following implantation using the 18 Fr CoreValve Revalving System (CRS) as part of the multicentre, expanded evaluation registry, 1-year after obtaining CE mark approval. METHODS AND RESULTS: Patients with symptomatic severe aortic stenosis and logistic Euroscore > or =15%, or age > or =75 years, or age > or =65 years associated with pre-defined risk factors, and for whom a physician proctor and a clinical specialist were in attendance during the implantation and who collected the clinical data, were included. From April 2007, to April 2008, 646 patients with a mean age of 81 +/- 6.6 years, mean aortic valve area 0.6 +/- 0.2 cm2, and logistic EuroSCORE of 23.1 +/- 13.8% were recruited. After valve implantation, the mean transaortic valve gradient decreased from 49.4 +/- 13.9 to 3 +/- 2 mmHg. All patients had paravalvular aortic regurgitation < or = grade 2. The rate of procedural success was 97%. The procedural mortality rate was 1.5%. At 30 days, the all-cause mortality rate (i.e, including procedural) was 8% and the combined rate of death, stroke and myocardial infarction was 9.3%. CONCLUSIONS: The results of this study demonstrate the high rate of procedural success and a low 30-day mortality in a large cohort of high-risk patients undergoing transcatheter aortic valve implantation (TAVI) with the CRS.
Resumo:
OBJECTIVES This study sought to study the efficacy and safety of newer-generation drug-eluting stents (DES) compared with bare-metal stents (BMS) in an appropriately powered population of patients with ST-segment elevation myocardial infarction (STEMI). BACKGROUND Among patients with STEMI, early generation DES improved efficacy but not safety compared with BMS. Newer-generation DES, everolimus-eluting stents, and biolimus A9-eluting stents, have been shown to improve clinical outcomes compared with early generation DES. METHODS Individual patient data for 2,665 STEMI patients enrolled in 2 large-scale randomized clinical trials comparing newer-generation DES with BMS were pooled: 1,326 patients received a newer-generation DES (everolimus-eluting stent or biolimus A9-eluting stent), whereas the remaining 1,329 patients received a BMS. Random-effects models were used to assess differences between the 2 groups for the device-oriented composite endpoint of cardiac death, target-vessel reinfarction, and target-lesion revascularization and the patient-oriented composite endpoint of all-cause death, any infarction, and any revascularization at 1 year. RESULTS Newer-generation DES substantially reduce the risk of the device-oriented composite endpoint compared with BMS at 1 year (relative risk [RR]: 0.58; 95% confidence interval [CI]: 0.43 to 0.79; p = 0.0004). Similarly, the risk of the patient-oriented composite endpoint was lower with newer-generation DES than BMS (RR: 0.78; 95% CI: 0.63 to 0.96; p = 0.02). Differences in favor of newer-generation DES were driven by both a lower risk of repeat revascularization of the target lesion (RR: 0.33; 95% CI: 0.20 to 0.52; p < 0.0001) and a lower risk of target-vessel infarction (RR: 0.36; 95% CI: 0.14 to 0.92; p = 0.03). Newer-generation DES also reduced the risk of definite stent thrombosis (RR: 0.35; 95% CI: 0.16 to 0.75; p = 0.006) compared with BMS. CONCLUSIONS Among patients with STEMI, newer-generation DES improve safety and efficacy compared with BMS throughout 1 year. It remains to be determined whether the differences in favor of newer-generation DES are sustained during long-term follow-up.
Resumo:
BACKGROUND Outcome data are limited in patients with ST-segment elevation acute myocardial infarction (STEMI) or other acute coronary syndromes (ACSs) who receive a drug-eluting stent (DES). Data suggest that first generation DES is associated with an increased risk of stent thrombosis when used in STEMI. Whether this observation persists with newer generation DES is unknown. The study objective was to analyze the two-year safety and effectiveness of Resolute™ zotarolimus-eluting stents (R-ZESs) implanted for STEMI, ACS without ST segment elevation (non-STEACS), and stable angina (SA). METHODS Data from the Resolute program (Resolute All Comers and Resolute International) were pooled and patients with R-ZES implantation were categorized by indication: STEMI (n=335), non-STEACS (n=1416), and SA (n=1260). RESULTS Mean age was 59.8±11.3 years (STEMI), 63.8±11.6 (non-STEACS), and 64.9±10.1 (SA). Fewer STEMI patients had diabetes (19.1% vs. 28.5% vs. 29.2%; P<0.001), prior MI (11.3% vs. 27.2% vs. 29.4%; P<0.001), or previous revascularization (11.3% vs. 27.9% vs. 37.6%; P<0.001). Two-year definite/probable stent thrombosis occurred in 2.4% (STEMI), 1.2% (non-STEACS) and 1.1% (SA) of patients with late/very late stent thrombosis (days 31-720) rates of 0.6% (STEMI and non-STEACS) and 0.4% (SA) (P=NS). The two-year mortality rate was 2.1% (STEMI), 4.8% (non-STEACS) and 3.7% (SA) (P=NS). Death or target vessel re-infarction occurred in 3.9% (STEMI), 8.7% (non-STEACS) and 7.3% (SA) (P=0.012). CONCLUSION R-ZES in STEMI and in other clinical presentations is effective and safe. Long term outcomes are favorable with an extremely rare incidence of late and very late stent thrombosis following R-ZES implantation across indications.
Resumo:
BACKGROUND Overlapping first generation sirolimus- and paclitaxel-eluting stents are associated with persistent inflammation, fibrin deposition and delayed endothelialisation in preclinical models, and adverse angiographic and clinical outcomes--including death and myocardial infarction (MI)--in clinical studies. OBJECTIVES To establish as to whether there are any safety concerns with newer generation drug-eluting stents (DES). DESIGN Propensity score adjustment of baseline anatomical and clinical characteristics were used to compare clinical outcomes (Kaplan-Meier estimates) between patients implanted with overlapping DES (Resolute zotarolimus-eluting stent (R-ZES) or R-ZES/other DES) against no overlapping DES. Additionally, angiographic outcomes for overlapping R-ZES and everolimus-eluting stents were evaluated in the randomised RESOLUTE All-Comers Trial. SETTING Patient level data from five controlled studies of the RESOLUTE Global Clinical Program evaluating the R-ZES were pooled. Enrollment criteria were generally unrestrictive. PATIENTS 5130 patients. MAIN OUTCOME MEASURES 2-year clinical outcomes and 13-month angiographic outcomes. RESULTS 644 of 5130 patients (12.6%) in the RESOLUTE Global Clinical Program underwent overlapping DES implantation. Implantation of overlapping DES was associated with an increased frequency of MI and more complex/calcified lesion types at baseline. Adjusted in-hospital, 30-day and 2-year clinical outcomes indicated comparable cardiac death (2-year overlap vs non-overlap: 3.0% vs 2.1%, p=0.36), major adverse cardiac events (13.3% vs 10.7%, p=0.19), target-vessel MI (3.9% vs 3.4%, p=0.40), clinically driven target vessel revascularisation (7.7% vs 6.5%, p=0.32), and definite/probable stent thrombosis (1.4% vs 0.9%, p=0.28). 13-month adjusted angiographic outcomes were comparable between overlapping and non-overlapping DES. CONCLUSIONS Overlapping newer generation DES are safe and effective, with comparable angiographic and clinical outcomes--including repeat revascularisation--to non-overlapping DES.
Resumo:
Clays and claystones are used as backfill and barrier materials in the design of waste repositories, because they act as hydraulic barriers and retain contaminants. Transport through such barriers occurs mainly by molecular diffusion. There is thus an interest to relate the diffusion properties of clays to their structural properties. In previous work, we have developed a concept for up-scaling pore-scale molecular diffusion coefficients using a grid-based model for the sample pore structure. Here we present an operational algorithm which can generate such model pore structures of polymineral materials. The obtained pore maps match the rock’s mineralogical components and its macroscopic properties such as porosity, grain and pore size distributions. Representative ensembles of grains in 2D or 3D are created by a lattice Monte Carlo (MC) method, which minimizes the interfacial energy of grains starting from an initial grain distribution. Pores are generated at grain boundaries and/or within grains. The method is general and allows to generate anisotropic structures with grains of approximately predetermined shapes, or with mixtures of different grain types. A specific focus of this study was on the simulation of clay-like materials. The generated clay pore maps were then used to derive upscaled effective diffusion coefficients for non-sorbing tracers using a homogenization technique. The large number of generated maps allowed to check the relations between micro-structural features of clays and their effective transport parameters, as is required to explain and extrapolate experimental diffusion results. As examples, we present a set of 2D and 3D simulations and investigated the effects of nanopores within particles (interlayer pores) and micropores between particles. Archie’s simple power law is followed in systems with only micropores. When nanopores are present, additional parameters are required; the data reveal that effective diffusion coefficients could be described by a sum of two power functions, related to the micro- and nanoporosity. We further used the model to investigate the relationships between particle orientation and effective transport properties of the sample.
Resumo:
Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.
Resumo:
Next-generation sequencing (NGS) is a valuable tool for the detection and quantification of HIV-1 variants in vivo. However, these technologies require detailed characterization and control of artificially induced errors to be applicable for accurate haplotype reconstruction. To investigate the occurrence of substitutions, insertions, and deletions at the individual steps of RT-PCR and NGS, 454 pyrosequencing was performed on amplified and non-amplified HIV-1 genomes. Artificial recombination was explored by mixing five different HIV-1 clonal strains (5-virus-mix) and applying different RT-PCR conditions followed by 454 pyrosequencing. Error rates ranged from 0.04-0.66% and were similar in amplified and non-amplified samples. Discrepancies were observed between forward and reverse reads, indicating that most errors were introduced during the pyrosequencing step. Using the 5-virus-mix, non-optimized, standard RT-PCR conditions introduced artificial recombinants in a fraction of at least 30% of the reads that subsequently led to an underestimation of true haplotype frequencies. We minimized the fraction of recombinants down to 0.9-2.6% by optimized, artifact-reducing RT-PCR conditions. This approach enabled correct haplotype reconstruction and frequency estimations consistent with reference data obtained by single genome amplification. RT-PCR conditions are crucial for correct frequency estimation and analysis of haplotypes in heterogeneous virus populations. We developed an RT-PCR procedure to generate NGS data useful for reliable haplotype reconstruction and quantification.
Resumo:
Second-generation antipsychotics (SGAs) are increasingly prescribed to treat psychiatric symptoms in pediatric patients infected with HIV. We examined the relationship between prescribed SGAs and physical growth in a cohort of youth with perinatally acquired HIV-1 infection. Pediatric AIDS Clinical Trials Group (PACTG), Protocol 219C (P219C), a multicenter, longitudinal observational study of children and adolescents perinatally exposed to HIV, was conducted from September 2000 until May 2007. The analysis included P219C participants who were perinatally HIV-infected, 3-18 years old, prescribed first SGA for at least 1 month, and had available baseline data prior to starting first SGA. Each participant prescribed an SGA was matched (based on gender, age, Tanner stage, baseline body mass index [BMI] z score) with 1-3 controls without antipsychotic prescriptions. The main outcomes were short-term (approximately 6 months) and long-term (approximately 2 years) changes in BMI z scores from baseline. There were 236 participants in the short-term and 198 in the long-term analysis. In linear regression models, youth with SGA prescriptions had increased BMI z scores relative to youth without antipsychotic prescriptions, for all SGAs (short-term increase = 0.192, p = 0.003; long-term increase = 0.350, p < 0.001), and for risperidone alone (short-term = 0.239, p = 0.002; long-term = 0.360, p = 0.001). Participants receiving both protease inhibitors (PIs) and SGAs showed especially large increases. These findings suggest that growth should be carefully monitored in youth with perinatally acquired HIV who are prescribed SGAs. Future research should investigate the interaction between PIs and SGAs in children and adolescents with perinatally acquired HIV infection.
Resumo:
PURPOSE To determine the image quality of an iterative reconstruction (IR) technique in low-dose MDCT (LDCT) of the chest of immunocompromised patients in an intraindividual comparison to filtered back projection (FBP) and to evaluate the dose reduction capability. MATERIALS AND METHODS 30 chest LDCT scans were performed in immunocompromised patients (Brilliance iCT; 20-40 mAs; mean CTDIvol: 1.7 mGy). The raw data were reconstructed using FBP and the IR technique (iDose4™, Philips, Best, The Netherlands) set to seven iteration levels. 30 routine-dose MDCT (RDCT) reconstructed with FBP served as controls (mean exposure: 116 mAs; mean CDTIvol: 7.6 mGy). Three blinded radiologists scored subjective image quality and lesion conspicuity. Quantitative parameters including CT attenuation and objective image noise (OIN) were determined. RESULTS In LDCT high iDose4™ levels lead to a significant decrease in OIN (FBP vs. iDose7: subscapular muscle 139.4 vs. 40.6 HU). The high iDose4™ levels provided significant improvements in image quality and artifact and noise reduction compared to LDCT FBP images. The conspicuity of subtle lesions was limited in LDCT FBP images. It significantly improved with high iDose4™ levels (> iDose4). LDCT with iDose4™ level 6 was determined to be of equivalent image quality as RDCT with FBP. CONCLUSION iDose4™ substantially improves image quality and lesion conspicuity and reduces noise in low-dose chest CT. Compared to RDCT, high iDose4™ levels provide equivalent image quality in LDCT, hence suggesting a potential dose reduction of almost 80%.
Resumo:
A search for pair-produced third generation scalar leptoquarks is presented, using proton-proton collisions at root s = 7 TeV at the LHC. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 4.7 fb(-1). Each leptoquark is assumed to decay to a tau lepton and a b-quark with a branching fraction equal to 100%. No statistically significant excess above the Standard Model expectation is observed. Third generation leptoquarks are therefore excluded at 95% confidence level for masses less than 534 GeV.