989 resultados para d18O H2O
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, with H2O and with D2O have been carried out in the gas phase at 297 K and at 345 K, using laser flash photolysis to generate and monitor SiH2. The reaction was studied independently as a function of H2O (or D2O) and SF6 (bath gas) pressures. At a fixed pressure of SF6 (5 Torr), [SiH2] decay constants, k(obs), showed a quadratic dependence on [H2O] or [D2O]. At a fixed pressure of H2O or D2O, k(obs) Values were strongly dependent on [SF6]. The combined rate expression is consistent with a mechanism involving the reversible formation of a vibrationally excited zwitterionic donor-acceptor complex, H2Si...OH2 (or H2Si...OD2). This complex can then either be stabilized by SF6 or it reacts with a further molecule of H2O (or D2O) in the rate-determining step. Isotope effects are in the range 1.0-1.5 and are broadly consistent with this mechanism. The mechanism is further supported by RRKM theory, which shows the association reaction to be close to its third-order region of pressure (SF6) dependence. Ab initio quantum calculations, carried out at the G3 level, support the existence of a hydrated zwitterion H2Si...(OH2)(2), which can rearrange to hydrated silanol, with an energy barrier below the reaction energy threshold. This is the first example of a gas-phase-catalyzed silylene reaction.
Resumo:
A new layered ammonium manganese(II) diphosphate, (NH4)(2)[Mn-3(P2O7)(2)(H2O)(2)], has been synthesised under solvothermal conditions at 433 K in ethylene glycol and the structure determined at 293 K using single-crystal X-ray diffraction data (M-r = 584.82, monoclinic, space group P2(1)/a, a = 9.4610( 8), b = 8.3565( 7), c = 9.477(1) Angstrom, beta = 99.908(9) degrees, V = 738.07 Angstrom(3), Z = 2, R = 0.0351 and R-w = 0.0411 for 1262 observed data (I > 3(sigma(I))). The structure consists of chains of cis- and trans-edge sharing MnO6 octahedra linked via P2O7 units to form layers of formula [Mn3P4O14(H2O)(2)](2-) in the ab plane. Ammonium ions lie between the manganese-diphosphate layers. A network of interlayer and ammonium-layer based hydrogen bonding holds the structure together. Magnetic measurements indicate Curie - Weiss behaviour above 30 K with mu(eff) = 5.74(1) mu(B) and theta = -23(1) K, consistent with the presence of high-spin Mn2+ ions and antiferromagnetic interactions. However, the magnetic data reveal a spontaneous magnetisation at 5 K, indicating a canting of Mn2+ moments in the antiferromagnetic ground state. On heating (NH4)(2)[Mn-3(P2O7)(2)(H2O)(2)] in water at 433 K under hydrothermal conditions, Mn-5(HPO4)(2)(PO4)(2).4H(2)O, synthetic hureaulite, is formed.
Resumo:
The title compound, potassium nickel(II) digallium tris-( phosphate) dihydrate, K[NiGa2(PO4)(3)(H2O)(2)], was synthesized hydrothermally. The structure is constructed from distorted trans-NiO4(H2O)2 octahedra linked through vertices and edges to GaO5 trigonal bipyramids and PO4 tetrahedra, forming a three-dimensional framework of formula [NiGa2(PO4)(3)(H2O)(2)](-). The K, Ni and one P atom lie on special positions (Wyckoff position 4e, site symmetry 2). There are two sets of channels within the framework, one running parallel to the [10 (1) over bar] direction and the other parallel to [001]. These intersect, forming a three-dimensional pore network in which the water molecules coordinated to the Ni atoms and the K+ ions required to charge balance the framework reside. The K+ ions lie in a highly distorted environment surrounded by ten O atoms, six of which are closer than 3.1 angstrom. The coordinated water molecules are within hydrogen-bonding distance to O atoms of bridging Ga-O-P groups.
Resumo:
A new polyoxometalate of chemical formula, Na-2(H2O)(4)(H3O)[Al(OH)(6)Mo6O18] (1) containing Anderson type large anion has been synthesized and characterized by single-crystal X-ray structure determination and IR spectroscopic studies. The crystal of 1 is triclinic, spacegroup P-1 with cell dimensions, a = 6.365(9) angstrom, b = 10.37(1) angstrom, c = 10.44(1) angstrom and alpha = 65.41(1), beta = 77.18(1), gamma = 86.58(1) and Z = 1. The compound 1 behaves as an ion exchanger and is stable in thermal, radiation and chemical environments. Radiochemical separation of the short-lived daughter Ba-137m (t(1/2) = 2.50 min) from its long-lived parent Cs-137 using this newly designed and synthesized ion exchanger has been developed.
Resumo:
We present argon predissociation vibrational spectra of the OH-.H2O and Cl-.H2O complexes in the 1000-1900 cm(-1) energy range, far below the OH stretching region reported in previous studies. This extension allows us to explore the fundamental transitions of the intramolecular bending vibrations associated with the water molecule, as well as that of the shared proton inferred from previous assignments of overtones in the higher energy region. Although the water bending fundamental in the Cl-.H2O spectrum is in very good agreement with expectations, the OH-.H2O spectrum is quite different than anticipated, being dominated by a strong feature at 1090 cm(-1). New full-diniensionality calculations of the OH-.H2O vibrational level structure using diffusion Monte Carlo and the VSCF/CI methods indicate this band arises from excitation of the shared proton.
Resumo:
Three mu(1.5)-dicyanamide bridged Mn(II) and Co(II) complexes having molecular formula [Mn(dca)(2)(H2O)(2)](n)center dot(hmt)(n) (1), [Co(dca)(2) (H2O)(2)](n)center dot(hmt)(n) (2) and [Co(dca)(2)(bpds)](n) (3) [dca = dicyanamide; hmt = hexamethylenetetramine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and characterized by single crystal X-ray diffraction study, low temperature (300-2 K) magnetic measurement and thermal behavior. The X-ray diffraction analysis of 1 and 2 reveals that they are isostructural, comprising of 1D coordination polymers [M(dca)(2)(H2O)(2)](n) [M = Mn(II), Co(II) for 1 and 2. respectively] with uncoordinated hmt molecules located among the chains. The [M(dca)(2)(H2O)(2)](n) chains and the lattice hint molecules are connected through H-bonds resulting in a 3D supramolecular architecture. The octahedral N4O2 chromophore surrounding the metal ion forms via two trans located water oxygens and four nitrogens from four nitrile dca. Complex 3 is a 1D chain formed by two mu(1.5)-dca and one bridging bpds. The octahedral N-6 coordination sphere surrounding the cobalt ions comprises four nitrogens from dca and two from bpds. Low temperature magnetic study indicates small antiferromagnetic coupling for all the complexes. Best fit parameters for 1: J = -0.17 cm(-1), g = -2.03 with R = 6.1 x 10(-4), for 2, J = -0.50 cm(-1), and for 3, J = -0.95 cm(-1). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
New lanthanide complexes of 2-hydroxynicotinic acid (H(2)nicO) [Ln(HnicO)(2)(mu-HnicO)(H2O)] (.) nH(2)O (Ln = Eu, Gd, Tb, Er, Tm) were prepared. The crystal structures of the [Tb(HnicO)(2)(g-HnicO)(H2O)] (.) 1.75H(2)O(1) and [Eu(HniCO)(2)(mu-HnicO)(H2O)] (.) 1.25H(2)O (2) complexes were determined by X-ray diffraction. The 2-hydroxynicotinate ligand coordinates through O,O-chelation to the lanthanide(III) ions as shown by X-ray diffraction and the infrared, Raman and NMR spectroscopy results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes. Lifetimes of 0.592 +/- 0.007 and 0.113 +/- 0.002 ms were determined for the Eu3+ and Tb3+ emitting states D-5(0) and D-5(4), respectively. A value around 30% was found for the D-5(0) quantum efficiency. The energy transfer mechanisms between the lanthanide ions and the ligands are discussed and compared with those observed in similar complexes involving the 3-hydroxypicolinate ligand based on the luminescence of the respective Gd3+-based complexes. (C) 2003 Published by Elsevier Ltd.
Resumo:
The structure of the mixed p(3x3)-(3OH+3H(2)O) phase on Pt{111} has been investigated by low-energy electron diffraction-IV structure analysis. The OH+H2O overlayer consists of hexagonal rings of coplanar oxygen atoms interlinked by hydrogen bonds. Lateral shifts of the O atoms away from atop sites result in different O-O separations and hexagons with only large separations (2.81 and 3.02 angstrom) linked by hexagons with alternating separations of 2.49 and 2.81/3.02 A. This unusual pattern is consistent with a hydrogen-bonded network in which water is adsorbed in cyclic rings separated by OH in a p(3x3) structure. The topmost two layers of the Pt atoms relax inwards with respect to the clean surface and both show vertical buckling of up to 0.06 angstrom. In addition, significant shifts away from the lateral bulk positions have been found for the second layer of Pt atoms. (C) 2005 American Institute of Physics.
Resumo:
We report on the consistency of water vapour line intensities in selected spectral regions between 800–12,000 cm−1 under atmospheric conditions using sun-pointing Fourier transform infrared spectroscopy. Measurements were made across a number of days at both a low and high altitude field site, sampling a relatively moist and relatively dry atmosphere. Our data suggests that across most of the 800–12,000 cm−1 spectral region water vapour line intensities in recent spectral line databases are generally consistent with what was observed. However, we find that HITRAN-2008 water vapour line intensities are systematically lower by up to 20% in the 8000–9200 cm−1 spectral interval relative to other spectral regions. This discrepancy is essentially removed when two new linelists (UCL08, a compilation of linelists and ab-initio calculations, and one based on recent laboratory measurements by Oudot et al. (2010) [10] in the 8000–9200 cm−1 spectral region) are used. This strongly suggests that the H2O line strengths in the HITRAN-2008 database are indeed underestimated in this spectral region and in need of revision. The calculated global-mean clear-sky absorption of solar radiation is increased by about 0.3 W m−2 when using either the UCL08 or Oudot line parameters in the 8000–9200 cm−1 region, instead of HITRAN-2008. We also found that the effect of isotopic fractionation of HDO is evident in the 2500–2900 cm−1 region in the observations.
Resumo:
Benzene-1,2-dioxyacetic acid (bdoaH2) reacts with Mn(CH3CO2)2·4H2O in an ethanol-water mixture to give the manganese(II) complex [Mn(bdoa)(H2O)3]. The X-ray crystal structure of the complex shows the metal to be pseudo seven-coordinate. The quadridentate bdoa2− dicar☐ylate ligand forms an essentially planar girdle around the metal, being strongly bondedtransoid by a car☐ylate oxygen atom from each of the two car☐ylate moieties (mean MnO 2.199A˚) and also weakly chelated by the two internal ether oxygen atoms (mean MnO 2.413A˚). The coordination sphere about the manganese is completed by three water molecules (mean MnO 2.146A˚) lying in a meridional plane orthogonal to that of the bdoa2− ligand. Magnetic, conductivity and voltammetry data for the complex are given, and its use as a catalyst for the disproportionisation of H2O2 is described.
Resumo:
An aqueous solution of the α-ω-dicarboxylic acid octanedioic acid (odaH2) reacts with [Cu2(μ-O2CCH3)4(H2O)2] in the presence of an excess of pyridine (py) to give the crystalline copper(II) complex {Cu2(η1η1μ2-oda)2(py)4(H2O)2}n (1). structure of 1, as determined by X-ray crystallography, consists of polymeric chains in which bridging oda2− anions link two crystallographically identical copper atoms. The copper atoms are also ligated by two transoidal pyridine nitrogens and an oxygen atom from an apical water molecule, giving the metals an overall N2O3 square-pyramidal geometry. If the blue solid 1 is gently heated, or if it is left to stand in its mother liquor for prolonged periods, it loses one molecule of pyridine and half a molecule of water and the green complex {Cu (oda)(py)(H2O)0.5}n (2) is formed. Spectroscopic and magnetic data for both complexes are given, together with the electrochemical and thermogravimetric measurements for 1.
Resumo:
[Et3NH]4[Mo8O26] reacted with MgCl2 giving the triethylammonum magnesium β-octamolybdate(VI) salt [Et3NH]2[Mg(H2O)6Mo8O26]·2H2O (3) and the triethylammonium hydronium β-octaamolybdate(VI) salt [Et3NH]3[(H3O)Mo8O26·2H2O (4), respectively. A small amount of [Et3NH]2[Mo6O269] was formed as a by-product. The salts 3 and 4 were characterized by X-ray crystallography. The [Mg(H2O)6Mo8O26]2− moiety in 3 is polymeric, with each octahedral [Mg(H2O)6]2+ ion sandwiched between two β[Mo8O26]4− ions, being hydrogen bonded to three terminal MOO oxygen atoms on one face of each β[Mo8O26]4− ion. The X-ray crystal structure of 4 corresponds to the reported previously. IR and conductivity data are given for 3 and 4.
Resumo:
The synthesis and X-ray crystal structure of the MnII,11 complex double salt [Mn2(η1η1µ2-oda)(phen)4(H2O)2][Mn2(η1η1µ2-oda(phen)4(η1-oda)2]·4H2O is reported, together with its catalytic activity towards the disproportionation of H2O2.
Resumo:
W(CO)6 reacts with a mixture of acetic acid/acetic anhydride to give [W3 (μ3-O)2(μ2η2-O2CCH3)6(H2O)3](CH3CO2)2 (1), which was converted by HClO4 to [W3 (μ3-O)2(μ2η2-O2CCH3)6(H2O)3](ClO4)2 (2). Addition of CH3CO2Na to the above reaction mixture, and prolonged exposure of the solution to air, results in the formation of the WIV/WVI complex salt [W3(μ3-O)2(μ2η2-O2CCH3)6(H2O)3]2[W10O32]·solvent (3). Complex 3 was also prepared by reacting 1 with Na2WO4·2H2O in acetic acid, and it has been characterized by X-ray crystallography. Addition of [CH3(CH2)3]4N(ClO4) to the reaction filtrate remaining after the preparation of [Mo2(μ-O2CCH3)4][from Mo(CO)6, CH3CO2H and (CH3CO)2O], followed by exposure to air, gives ([CH3(CH2)3]4N)2[Mo6O19] (4).
Resumo:
Phenylphosphinic acid (HPhPO2H) is oxidized to phenylphosphonic acid (PhPO3H2) at room temperature using a solution of [Cu2(μ-O2CCH3)4(H2O)2] in pyridine. The phenylphosphonic acid was recovered as the monomeric copper(II) complex [Cu(PhPO3H)2(C5H5N)4]·H2O (1a), and the reaction thought to proceed via a copper(I) intermediate. Recrystallization of 1a from methanol gave [Cu(PhPO3H)2(C5H5N)4]·2CH3OH (1b). The unsolvated complex [Cu(PhPO3H)2(C5H5N)4] (1c) was prepared by refluxing polymeric [Cu(PhPO3)(H2O)] (2) in pyridine. The X-ray crystal structures of 1b and 1c show that in each of these monomeric complexes the copper(II) ion is ligated by four equatorial pyridine molecules and two axial monoanionic phenylphosphonate groups. A cyclic voltammetric study of 1a revealed a quasi-reversible Cu2+/Cu+ couple with E1/2 = +228 mV (vs Ag/AgCl).