939 resultados para cooperative relaying
Resumo:
A multiuser dual-hop relaying system over mixed radio frequency/free-space optical (RF/FSO) links is investigated. Specifically, the system consists of m single-antenna sources, a relay node equipped with n≥ m receive antennas and a single photo-aperture transmitter, and one destination equipped with a single photo-detector. RF links are used for the simultaneous data transmission from multiple sources to the relay. The relay operates under the decode-and-forward protocol and utilizes the popular V-BLAST technique by successively decoding each user's transmitted stream. Two common norm-based orderings are adopted, i.e., the streams are decoded in an ascending or a descending order. After V-BLAST, the relay retransmits the decoded information to the destination via a point-to-point FSO link in m consecutive timeslots. Analytical expressions for the end-to-end outage probability and average symbol error probability of each user are derived, while closed-form asymptotic expressions are also presented. Capitalizing on the derived results, some engineering insights are manifested, such as the coding and diversity gain of each user, the impact of the pointing error displacement on the FSO link and the V-BLAST ordering effectiveness at the relay.
Resumo:
O presente trabalho propõe-se a divulgar as mais significativas técnicas de esquemas cooperativos, de forma a ultrapassar alguns dos problemas dos sistemas móveis sem fios da próxima geração, estendendo a área de cobertura destes sistemas, assim como a sua capacidade e fiabilidade. O estudo de diversos esquemas cooperativos é efetuado em termos de capacidade e de taxa de erros, fazendo variar o número de relays e de antenas em cada elemento do sistema. Diversos algoritmos com aplicação em sistemas cooperativos são desenvolvidos e propostos ao longo desta tese, como códigos espaço-frequência aplicados de forma distribuída nos relays, para sistemas baseados na tecnologia OFDM e sob diversos cenários próximos da realidade. Os sistemas cooperativos são particularmente úteis em situações em que o caminho direto entre dois terminais não está acessível ou tem uma fraca qualidade de transmissão. Tendo este aspeto em consideração, e pretendendo ter a máxima eficiência espetral e máxima diversidade, um algoritmo com precodificação é também proposto para múltiplos relays, cada um equipado com uma ou duas antenas. A formulação matemática associada aos algoritmos propostos é apresentada, assim como a derivação da probabilidade de erro teórica. O desempenho dos sistemas assistidos por relays usando os algoritmos propostos é comparado em relação a outros esquemas cooperativos equivalentes e a esquemas não-cooperativos, considerando cenários com diferentes qualidades de canal, daí advindo importantes conclusões em relação a estes sistemas.
Resumo:
Esta tese apresenta um estudo sobre alguns dos protocolos de cooperação MAC para redes sem fios utilizando o sistema IEEE 802.11 multi-débito. É proposto um novo modelo de arquitetura para a categorização e análise da cooperação em redes sem fios, tendo este modelo sido aplicado a protocolos cooperativos existentes para camada MAC. É investigado como as características do meio físico, assim como os requisitos de níveis superiores podem ser aplicados ao processo de cooperação, com vista a melhorar as características de funcionamento da rede de comunicações. Para este propósito são exploradas as métricas mais relevantes para o processo de cooperação. São igualmente estudados os limites impostos pelos protocolos da camada MAC e as limitações práticas impostas por protocolos da família de normas que compõem o IEEE 802.11. Neste trabalho foi criada uma métrica multicamada, que permite considerar os requisitos aplicacionais de performance e o tipo de tráfego, assim como a mobilidade dos dispositivos, no funcionamento dos mecanismos de cooperação. Como forma de validação, e para corretamente avaliar o impacto da métrica, um novo protocolo de cooperação foi desenvolvido e implementado. O seu funcionamento é descrito de forma analítica assim como validado através de a um ambiente de simulação. Os resultados obtidos mostram que a utilização de uma métrica multicamada é uma técnica robusta, fornecendo melhorias consistentes no contexto de redes IEEE 802.11. São igualmente demonstradas várias outras características de funcionamento com impacto para as comunicações. Estes dados fornecem uma visão real e encorajadora para a realização de mais pesquisas para a melhoria da performance dos protocolos cooperativos, assim como a sua utilização num variado número de aplicações futuras. No final do documento são apresentados alguns desafios para a continuação da investigação deste tópico.
Resumo:
Future emerging market trends head towards positioning based services placing a new perspective on the way we obtain and exploit positioning information. On one hand, innovations in information technology and wireless communication systems enabled the development of numerous location based applications such as vehicle navigation and tracking, sensor networks applications, home automation, asset management, security and context aware location services. On the other hand, wireless networks themselves may bene t from localization information to improve the performances of di erent network layers. Location based routing, synchronization, interference cancellation are prime examples of applications where location information can be useful. Typical positioning solutions rely on measurements and exploitation of distance dependent signal metrics, such as the received signal strength, time of arrival or angle of arrival. They are cheaper and easier to implement than the dedicated positioning systems based on ngerprinting, but at the cost of accuracy. Therefore intelligent localization algorithms and signal processing techniques have to be applied to mitigate the lack of accuracy in distance estimates. Cooperation between nodes is used in cases where conventional positioning techniques do not perform well due to lack of existing infrastructure, or obstructed indoor environment. The objective is to concentrate on hybrid architecture where some nodes have points of attachment to an infrastructure, and simultaneously are interconnected via short-range ad hoc links. The availability of more capable handsets enables more innovative scenarios that take advantage of multiple radio access networks as well as peer-to-peer links for positioning. Link selection is used to optimize the tradeo between the power consumption of participating nodes and the quality of target localization. The Geometric Dilution of Precision and the Cramer-Rao Lower Bound can be used as criteria for choosing the appropriate set of anchor nodes and corresponding measurements before attempting location estimation itself. This work analyzes the existing solutions for node selection in order to improve localization performance, and proposes a novel method based on utility functions. The proposed method is then extended to mobile and heterogeneous environments. Simulations have been carried out, as well as evaluation with real measurement data. In addition, some speci c cases have been considered, such as localization in ill-conditioned scenarios and the use of negative information. The proposed approaches have shown to enhance estimation accuracy, whilst signi cantly reducing complexity, power consumption and signalling overhead.
Resumo:
The promise of a truly mobile experience is to have the freedom to roam around anywhere and not be bound to a single location. However, the energy required to keep mobile devices connected to the network over extended periods of time quickly dissipates. In fact, energy is a critical resource in the design of wireless networks since wireless devices are usually powered by batteries. Furthermore, multi-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the bene ts gained from multiple interfaces come at a cost in terms of energy consumption having profound e ect on the mobile battery lifetime and standby time. This concern is rea rmed by the fact that battery lifetime is one of the top reasons why consumers are deterred from using advanced multimedia services on their mobile on a frequent basis. In order to secure market penetration for next generation services energy e ciency needs to be placed at the forefront of system design. However, despite recent e orts, energy compliant features in legacy technologies are still in its infancy, and new disruptive architectures coupled with interdisciplinary design approaches are required in order to not only promote the energy gain within a single protocol layer, but to enhance the energy gain from a holistic perspective. A promising approach is cooperative smart systems, that in addition to exploiting context information, are entities that are able to form a coalition and cooperate in order to achieve a common goal. Migrating from this baseline, this thesis investigates how these technology paradigm can be applied towards reducing the energy consumption in mobile networks. In addition, we introduce an additional energy saving dimension by adopting an interlayer design so that protocol layers are designed to work in synergy with the host system, rather than independently, for harnessing energy. In this work, we exploit context information, cooperation and inter-layer design for developing new energy e cient and technology agnostic building blocks for mobile networks. These technology enablers include energy e cient node discovery and short-range cooperation for energy saving in mobile handsets, complemented by energy-aware smart scheduling for promoting energy saving on the network side. Analytical and simulations results were obtained, and veri ed in the lab on a real hardware testbed. Results have shown that up to 50% energy saving could be obtained.
Resumo:
In this paper is presented a Game Theory based methodology to allocate transmission costs, considering cooperation and competition between producers. As original contribution, it finds the degree of participation on the additional costs according to the demand behavior. A comparative study was carried out between the obtained results using Nucleolus balance and Shapley Value, with other techniques such as Averages Allocation method and the Generalized Generation Distribution Factors method (GGDF). As example, a six nodes network was used for the simulations. The results demonstrate the ability to find adequate solutions on open access environment to the networks.
Resumo:
This paper proposes an one-step decentralised coordination model based on an effective feedback mechanism to reduce the complexity of the needed interactions among interdependent nodes of a cooperative distributed system until a collective adaptation behaviour is determined. Positive feedback is used to reinforce the selection of the new desired global service solution, while negative feedback discourages nodes to act in a greedy fashion as this adversely impacts on the provided service levels at neighbouring nodes. The reduced complexity and overhead of the proposed decentralised coordination model are validated through extensive evaluations.
Resumo:
The scarcity and diversity of resources among the devices of heterogeneous computing environments may affect their ability to perform services with specific Quality of Service constraints, particularly in dynamic distributed environments where the characteristics of the computational load cannot always be predicted in advance. Our work addresses this problem by allowing resource constrained devices to cooperate with more powerful neighbour nodes, opportunistically taking advantage of global distributed resources and processing power. Rather than assuming that the dynamic configuration of this cooperative service executes until it computes its optimal output, the paper proposes an anytime approach that has the ability to tradeoff deliberation time for the quality of the solution. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves at each iteration, with an overhead that can be considered negligible.
Resumo:
The long term evolution (LTE) is one of the latest standards in the mobile communications market. To achieve its performance, LTE networks use several techniques, such as multi-carrier technique, multiple-input-multiple-output and cooperative communications. Inside cooperative communications, this paper focuses on the fixed relaying technique, presenting a way for determining the best position to deploy the relay station (RS), from a set of empirical good solutions, and also to quantify the associated performance gain using different cluster size configurations. The best RS position was obtained through realistic simulations, which set it as the middle of the cell's circumference arc. Additionally, it also confirmed that network's performance is improved when the number of RSs is increased. It was possible to conclude that, for each deployed RS, the percentage of area served by an RS increases about 10 %. Furthermore, the mean data rate in the cell has been increased by approximately 60 % through the use of RSs. Finally, a given scenario with a larger number of RSs, can experience the same performance as an equivalent scenario without RSs, but with higher reuse distance. This conduces to a compromise solution between RS installation and cluster size, in order to maximize capacity, as well as performance.
Resumo:
Target tracking with bearing-only sensors is a challenging problem when the target moves dynamically in complex scenarios. Besides the partial observability of such sensors, they have limited field of views, occlusions can occur, etc. In those cases, cooperative approaches with multiple tracking robots are interesting, but the different sources of uncertain information need to be considered appropriately in order to achieve better estimates. Even though there exist probabilistic filters that can estimate the position of a target dealing with incertainties, bearing-only measurements bring usually additional problems with initialization and data association. In this paper, we propose a multi-robot triangulation method with a dynamic baseline that can triangulate bearing-only measurements in a probabilistic manner to produce 3D observations. This method is combined with a decentralized stochastic filter and used to tackle those initialization and data association issues. The approach is validated with simulations and field experiments where a team of aerial and ground robots with cameras track a dynamic target.
Resumo:
In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.
Resumo:
BACKGROUND: Invasive fungal diseases are important causes of morbidity and mortality. Clarity and uniformity in defining these infections are important factors in improving the quality of clinical studies. A standard set of definitions strengthens the consistency and reproducibility of such studies. METHODS: After the introduction of the original European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group definitions, advances in diagnostic technology and the recognition of areas in need of improvement led to a revision of this document. The revision process started with a meeting of participants in 2003, to decide on the process and to draft the proposal. This was followed by several rounds of consultation until a final draft was approved in 2005. This was made available for 6 months to allow public comment, and then the manuscript was prepared and approved. RESULTS: The revised definitions retain the original classifications of "proven," "probable," and "possible" invasive fungal disease, but the definition of "probable" has been expanded, whereas the scope of the category "possible" has been diminished. The category of proven invasive fungal disease can apply to any patient, regardless of whether the patient is immunocompromised, whereas the probable and possible categories are proposed for immunocompromised patients only. CONCLUSIONS: These revised definitions of invasive fungal disease are intended to advance clinical and epidemiological research and may serve as a useful model for defining other infections in high-risk patients.
Resumo:
This experimental study examined the effects of cooperative learning and expliciUimpliGit instruction on student achievement and attitudes toward working in cooperative groups. Specifically, fourth- and fifth-grade students (n=48) were randomly assigned to two conditions: cooperative learning with explicit instruction and cooperative learning with implicit instruction. All participants were given initial training either explicitly or implicitly in cooperative learning procedures via 10 one-hour sessions. Following the instruction period, all students participated in completing a group project related to a famous artists unit. It was hypothesized that the explicit instruction training would enhance students' scores on the famous artists test and the group projects, as well as improve students' attitudes toward cooperative learning. Although the explicit training group did not achieve significantly higher scores on the famous artists test, significant differences were found in group project results between the explicit and implicit groups. The explicit group also exhibited more favourable and positive attitudes toward cooperative learning. The findings of this study demonstrate that combining cooperative learning with explicit instruction is an effective classroom strategy and a useful practice for presenting and learning new information, as well as working in groups with success.
Resumo:
This experimental study examined the effects of cooperative learning and a question-answering strategy called elaborative interrogation ("Why is this fact true?") on the learning of factual information about familiar animals. Retention gains were compared across four study conditions: elaborative-interrogation-plus-cooperative learning, cooperative-learning, elaborative-interrogation, and reading-control. Sixth-grade students (n=68) were randomly assigned to the four conditions. All participants were given initial training and practice in cooperative learning procedures via three 45-minute sessions. After studying 36 facts about six animals, students' retention gains were measured via immediate free recall, immediate matched association, 30-day, and GO-day matched association tests. A priori comparisons were made to analyze the data. For immediate free recall and immediate matched association, significant differences were found between students in the three experimental conditions versus those in the control condition. Elaborative-interrogation and elaborativeinterrogation- plus-cooperative-learning also promoted longterm retention (measured via 30-day matched association) of the material relative to repetitive reading with elaborative-interrogation promoting the most durable gains (measured via GO-day matched association). The relationship between the types of elaborative responses and probability of subsequent retention was also examined. Even when students were unable to provide adequate answers to the why questions, learning was facilitated more so than repetitive reading. In general, generation of adequate elaborations was associated with greater probability of recall than was provision of inadequate answers. The findings of the study demonstrate that cooperative learning and the use of elaborative interrogation, both individually and collaboratively, are effective classroom procedures for facilitating children's learning of new information.