928 resultados para control engineering computing
Resumo:
The "Java Intelligent Tutoring System" (JITS) research project focused on designing, constructing, and determining the effectiveness of an Intelligent Tutoring System for beginner Java programming students at the postsecondary level. The participants in this research were students in the School of Applied Computing and Engineering Sciences at Sheridan College. This research involved consistently gathering input from students and instructors using JITS as it developed. The cyclic process involving designing, developing, testing, and refinement was used for the construction of JITS to ensure that it adequately meets the needs of students and instructors. The second objective in this dissertation determined the effectiveness of learning within this environment. The main findings indicate that JITS is a richly interactive ITS that engages students on Java programming problems. JITS is equipped with a sophisticated personalized feedback mechanism that models and supports each student in his/her learning style. The assessment component involved 2 main quantitative experiments to determine the effectiveness of JITS in terms of student performance. In both experiments it was determined that a statistically significant difference was achieved between the control group and the experimental group (i.e., JITS group). The main effect for Test (i.e., pre- and postiest), F( l , 35) == 119.43,p < .001, was qualified by a Test by Group interaction, F( l , 35) == 4.98,p < .05, and a Test by Time interaction, F( l , 35) == 43.82, p < .001. Similar findings were found for the second experiment; Test by Group interaction revealed F( 1 , 92) == 5.36, p < .025. In both experiments the JITS groups outperformed the corresponding control groups at posttest.
Resumo:
Tesis (Master of Science in Electrical Engineering) UANL, 2014.
Resumo:
Depuis quelques années, la recherche dans le domaine des réseaux maillés sans fil ("Wireless Mesh Network (WMN)" en anglais) suscite un grand intérêt auprès de la communauté des chercheurs en télécommunications. Ceci est dû aux nombreux avantages que la technologie WMN offre, telles que l'installation facile et peu coûteuse, la connectivité fiable et l'interopérabilité flexible avec d'autres réseaux existants (réseaux Wi-Fi, réseaux WiMax, réseaux cellulaires, réseaux de capteurs, etc.). Cependant, plusieurs problèmes restent encore à résoudre comme le passage à l'échelle, la sécurité, la qualité de service (QdS), la gestion des ressources, etc. Ces problèmes persistent pour les WMNs, d'autant plus que le nombre des utilisateurs va en se multipliant. Il faut donc penser à améliorer les protocoles existants ou à en concevoir de nouveaux. L'objectif de notre recherche est de résoudre certaines des limitations rencontrées à l'heure actuelle dans les WMNs et d'améliorer la QdS des applications multimédia temps-réel (par exemple, la voix). Le travail de recherche de cette thèse sera divisé essentiellement en trois principaux volets: le contrôle d‟admission du trafic, la différentiation du trafic et la réaffectation adaptative des canaux lors de la présence du trafic en relève ("handoff" en anglais). Dans le premier volet, nous proposons un mécanisme distribué de contrôle d'admission se basant sur le concept des cliques (une clique correspond à un sous-ensemble de liens logiques qui interfèrent les uns avec les autres) dans un réseau à multiples-sauts, multiples-radios et multiples-canaux, appelé RCAC. Nous proposons en particulier un modèle analytique qui calcule le ratio approprié d'admission du trafic et qui garantit une probabilité de perte de paquets dans le réseau n'excédant pas un seuil prédéfini. Le mécanisme RCAC permet d‟assurer la QdS requise pour les flux entrants, sans dégrader la QdS des flux existants. Il permet aussi d‟assurer la QdS en termes de longueur du délai de bout en bout pour les divers flux. Le deuxième volet traite de la différentiation de services dans le protocole IEEE 802.11s afin de permettre une meilleure QdS, notamment pour les applications avec des contraintes temporelles (par exemple, voix, visioconférence). À cet égard, nous proposons un mécanisme d'ajustement de tranches de temps ("time-slots"), selon la classe de service, ED-MDA (Enhanced Differentiated-Mesh Deterministic Access), combiné à un algorithme efficace de contrôle d'admission EAC (Efficient Admission Control), afin de permettre une utilisation élevée et efficace des ressources. Le mécanisme EAC prend en compte le trafic en relève et lui attribue une priorité supérieure par rapport au nouveau trafic pour minimiser les interruptions de communications en cours. Dans le troisième volet, nous nous intéressons à minimiser le surcoût et le délai de re-routage des utilisateurs mobiles et/ou des applications multimédia en réaffectant les canaux dans les WMNs à Multiples-Radios (MR-WMNs). En premier lieu, nous proposons un modèle d'optimisation qui maximise le débit, améliore l'équité entre utilisateurs et minimise le surcoût dû à la relève des appels. Ce modèle a été résolu par le logiciel CPLEX pour un nombre limité de noeuds. En second lieu, nous élaborons des heuristiques/méta-heuristiques centralisées pour permettre de résoudre ce modèle pour des réseaux de taille réelle. Finalement, nous proposons un algorithme pour réaffecter en temps-réel et de façon prudente les canaux aux interfaces. Cet algorithme a pour objectif de minimiser le surcoût et le délai du re-routage spécialement du trafic dynamique généré par les appels en relève. Ensuite, ce mécanisme est amélioré en prenant en compte l‟équilibrage de la charge entre cliques.
Resumo:
Recent advances in tissue engineering and regenerative medicine have shown that controlling cells microenvironment during growth is a key element to the development of successful therapeutic system. To achieve such control, researchers have first proposed the use of polymeric scaffolds that were able to support cellular growth and, to a certain extent, favor cell organization and tissue structure. With nowadays availability of a large pool of stem cell lines, such approach has appeared to be rather limited since it does not offer the fine control of the cell micro-environment in space and time (4D). Therefore, researchers are currently focusing their efforts on developing strategies that include active compound delivery systems in order to add a fourth dimension to the design of 3D scaffolds. This review will focus on recent concepts and applications of 2D and 3D techniques that have been used to control the load and release of active compounds used to promote cell differentiation and proliferation in or out of a scaffold. We will first present recent advances in the design of 2D polymeric scaffolds and the different techniques that have been used to deposit molecular cues and cells in a controlled fashion. We will continue presenting the recent advances made in the design of 3D scaffolds based on hydrogels as well as polymeric fibers and we will finish by presenting some of the research avenues that are still to be explored.
Resumo:
The present study aimed at critically looking at the current practice of the installation of compacted clay liner using bentonite enhanced sand (BES). The application of bentonite is currently the most accepted practice for lining purposes. The ideal bentonite sand combination, which satisfies the liner requirements is 20% bentonite and 80% sand, was selected as one of the liner materials for the investigation of development of desiccation cracks. Locally available sundried marine clay and its combination with bentonite were also included in the study. The desiccation tests on liner materials were conducted for wet/dry cycles to simulate the seasonal variations. Digital image processing techniques were used to measure the crack intensity factor (CIF), a useful and effective parameter for quantification of desiccation cracking. The repeatability of the tests could be well established, as the variation in CIF values of identical samples had a very narrow range of 0 to 2%. The studies on the development of desiccation cracks showed that the CIF of bentonite enhanced sand mixture (BES) was 18.09%, 39.75% and 21.22% for the first, second and third cycles respectively, while it was only 9.83%, 7.52% and 4.58% respectively for sun dried marine clay (SMC). Thus the locally available, alternate liner material suggested, viz SMC, is far superior to BES, when subjected to alternate wet/dry cycles. Further, the improvement of these liner materials when amended with randomly distributed fibre reinforcements was also investigated. Three types of fibres ,namely nylon fibre, polypropylene monofilament and polypropylene fibre mesh were used for the study of fibre amended BES and SMC.The influence of these amendments on the properties of the above liner materials is also studied. The results showed that there is definite improvement in the properties of the liner materials when it is reinforced with discrete random fibres. The study also proved that the desiccation cracks could be controlled with the help of fibre reinforcement.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
Information and communication technologies are the tools that underpin the emerging “Knowledge Society”. Exchange of information or knowledge between people and through networks of people has always taken place. But the ICT has radically changed the magnitude of this exchange, and thus factors such as timeliness of information and information dissemination patterns have become more important than ever.Since information and knowledge are so vital for the all round human development, libraries and institutions that manage these resources are indeed invaluable. So, the Library and Information Centres have a key role in the acquisition, processing, preservation and dissemination of information and knowledge. ln the modern context, library is providing service based on different types of documents such as manuscripts, printed, digital, etc. At the same time, acquisition, access, process, service etc. of these resources have become complicated now than ever before. The lCT made instrumental to extend libraries beyond the physical walls of a building and providing assistance in navigating and analyzing tremendous amounts of knowledge with a variety of digital tools. Thus, modern libraries are increasingly being re-defined as places to get unrestricted access to information in many formats and from many sources.The research was conducted in the university libraries in Kerala State, India. lt was identified that even though the information resources are flooding world over and several technologies have emerged to manage the situation for providing effective services to its clientele, most of the university libraries in Kerala were unable to exploit these technologies at maximum level. Though the libraries have automated many of their functions, wide gap prevails between the possible services and provided services. There are many good examples world over in the application of lCTs in libraries for the maximization of services and many such libraries have adopted the principles of reengineering and re-defining as a management strategy. Hence this study was targeted to look into how effectively adopted the modern lCTs in our libraries for maximizing the efficiency of operations and services and whether the principles of re-engineering and- redefining can be applied towards this.Data‘ was collected from library users, viz; student as well as faculty users; library ,professionals and university librarians, using structured questionnaires. This has been .supplemented by-observation of working of the libraries, discussions and interviews with the different types of users and staff, review of literature, etc. Personal observation of the organization set up, management practices, functions, facilities, resources, utilization of information resources and facilities by the users, etc. of the university libraries in Kerala have been made. Statistical techniques like percentage, mean, weighted mean, standard deviation, correlation, trend analysis, etc. have been used to analyse data.All the libraries could exploit only a very few possibilities of modern lCTs and hence they could not achieve effective Universal Bibliographic Control and desired efficiency and effectiveness in services. Because of this, the users as well as professionals are dissatisfied. Functional effectiveness in acquisition, access and process of information resources in various formats, development and maintenance of OPAC and WebOPAC, digital document delivery to remote users, Web based clearing of library counter services and resources, development of full-text databases, digital libraries and institutional repositories, consortia based operations for e-journals and databases, user education and information literacy, professional development with stress on lCTs, network administration and website maintenance, marketing of information, etc. are major areas need special attention to improve the situation. Finance, knowledge level on ICTs among library staff, professional dynamism and leadership, vision and support of the administrators and policy makers, prevailing educational set up and social environment in the state, etc. are some of the major hurdles in reaping the maximum possibilities of lCTs by the university libraries in Kerala. The principles of Business Process Re-engineering are found suitable to effectively apply to re-structure and redefine the operations and service system of the libraries. Most of the conventional departments or divisions prevailing in the university libraries were functioning as watertight compartments and their existing management system was more rigid to adopt the principles of change management. Hence, a thorough re-structuring of the divisions was indicated. Consortia based activities and pooling and sharing of information resources was advocated to meet the varied needs of the users in the main campuses and off campuses of the universities, affiliated colleges and remote stations. A uniform staff policy similar to that prevailing in CSIR, DRDO, ISRO, etc. has been proposed by the study not only in the university libraries in kerala but for the entire country.Restructuring of Lis education,integrated and Planned development of school,college,research and public library systems,etc.were also justified for reaping maximum benefits of the modern ICTs.
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.
Resumo:
Microarray data analysis is one of data mining tool which is used to extract meaningful information hidden in biological data. One of the major focuses on microarray data analysis is the reconstruction of gene regulatory network that may be used to provide a broader understanding on the functioning of complex cellular systems. Since cancer is a genetic disease arising from the abnormal gene function, the identification of cancerous genes and the regulatory pathways they control will provide a better platform for understanding the tumor formation and development. The major focus of this thesis is to understand the regulation of genes responsible for the development of cancer, particularly colorectal cancer by analyzing the microarray expression data. In this thesis, four computational algorithms namely fuzzy logic algorithm, modified genetic algorithm, dynamic neural fuzzy network and Takagi Sugeno Kang-type recurrent neural fuzzy network are used to extract cancer specific gene regulatory network from plasma RNA dataset of colorectal cancer patients. Plasma RNA is highly attractive for cancer analysis since it requires a collection of small amount of blood and it can be obtained at any time in repetitive fashion allowing the analysis of disease progression and treatment response.
Resumo:
The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.
Resumo:
The centralised control rooms of large industrial plants have separated people from the processes they should control. Perception is restricted mainly to the visual sense. Only telephone or radio links provide narrow-band voice communication with maintenance personnel down in the plant. Multimedia equipment can perceptionally bring back the operator into the plant while bodily keeping him the comfortable and safe control room. This involves video and audio transmission from process components as well as sights and sounds artificially generated from measurements. Groupware systems support inter-action between operators, engineers, and managers in different plants. With support from the German government, the state of Hessen, and industrial companies the Laboratory for Systems Engineering and Human-Machine Systems at the University of Kassel establishes an Experimental Multimedia Process Control Room. Core of this set-up are two high-performance graphics workstations linked to one of several process or vehicle simulators. Multimedia periphery includes video and teleconferencing equipment and a vibration and sound generation system.
Resumo:
Self-adaptive software provides a profound solution for adapting applications to changing contexts in dynamic and heterogeneous environments. Having emerged from Autonomic Computing, it incorporates fully autonomous decision making based on predefined structural and behavioural models. The most common approach for architectural runtime adaptation is the MAPE-K adaptation loop implementing an external adaptation manager without manual user control. However, it has turned out that adaptation behaviour lacks acceptance if it does not correspond to a user’s expectations – particularly for Ubiquitous Computing scenarios with user interaction. Adaptations can be irritating and distracting if they are not appropriate for a certain situation. In general, uncertainty during development and at run-time causes problems with users being outside the adaptation loop. In a literature study, we analyse publications about self-adaptive software research. The results show a discrepancy between the motivated application domains, the maturity of examples, and the quality of evaluations on the one hand and the provided solutions on the other hand. Only few publications analysed the impact of their work on the user, but many employ user-oriented examples for motivation and demonstration. To incorporate the user within the adaptation loop and to deal with uncertainty, our proposed solutions enable user participation for interactive selfadaptive software while at the same time maintaining the benefits of intelligent autonomous behaviour. We define three dimensions of user participation, namely temporal, behavioural, and structural user participation. This dissertation contributes solutions for user participation in the temporal and behavioural dimension. The temporal dimension addresses the moment of adaptation which is classically determined by the self-adaptive system. We provide mechanisms allowing users to influence or to define the moment of adaptation. With our solution, users can have full control over the moment of adaptation or the self-adaptive software considers the user’s situation more appropriately. The behavioural dimension addresses the actual adaptation logic and the resulting run-time behaviour. Application behaviour is established during development and does not necessarily match the run-time expectations. Our contributions are three distinct solutions which allow users to make changes to the application’s runtime behaviour: dynamic utility functions, fuzzy-based reasoning, and learning-based reasoning. The foundation of our work is a notification and feedback solution that improves intelligibility and controllability of self-adaptive applications by implementing a bi-directional communication between self-adaptive software and the user. The different mechanisms from the temporal and behavioural participation dimension require the notification and feedback solution to inform users on adaptation actions and to provide a mechanism to influence adaptations. Case studies show the feasibility of the developed solutions. Moreover, an extensive user study with 62 participants was conducted to evaluate the impact of notifications before and after adaptations. Although the study revealed that there is no preference for a particular notification design, participants clearly appreciated intelligibility and controllability over autonomous adaptations.
Resumo:
Since no physical system can ever be completely isolated from its environment, the study of open quantum systems is pivotal to reliably and accurately control complex quantum systems. In practice, reliability of the control field needs to be confirmed via certification of the target evolution while accuracy requires the derivation of high-fidelity control schemes in the presence of decoherence. In the first part of this thesis an algebraic framework is presented that allows to determine the minimal requirements on the unique characterisation of arbitrary unitary gates in open quantum systems, independent on the particular physical implementation of the employed quantum device. To this end, a set of theorems is devised that can be used to assess whether a given set of input states on a quantum channel is sufficient to judge whether a desired unitary gate is realised. This allows to determine the minimal input for such a task, which proves to be, quite remarkably, independent of system size. These results allow to elucidate the fundamental limits regarding certification and tomography of open quantum systems. The combination of these insights with state-of-the-art Monte Carlo process certification techniques permits a significant improvement of the scaling when certifying arbitrary unitary gates. This improvement is not only restricted to quantum information devices where the basic information carrier is the qubit but it also extends to systems where the fundamental informational entities can be of arbitary dimensionality, the so-called qudits. The second part of this thesis concerns the impact of these findings from the point of view of Optimal Control Theory (OCT). OCT for quantum systems utilises concepts from engineering such as feedback and optimisation to engineer constructive and destructive interferences in order to steer a physical process in a desired direction. It turns out that the aforementioned mathematical findings allow to deduce novel optimisation functionals that significantly reduce not only the required memory for numerical control algorithms but also the total CPU time required to obtain a certain fidelity for the optimised process. The thesis concludes by discussing two problems of fundamental interest in quantum information processing from the point of view of optimal control - the preparation of pure states and the implementation of unitary gates in open quantum systems. For both cases specific physical examples are considered: for the former the vibrational cooling of molecules via optical pumping and for the latter a superconducting phase qudit implementation. In particular, it is illustrated how features of the environment can be exploited to reach the desired targets.
Resumo:
A revolution\0\0\0 in earthmoving, a $100 billion industry, can be achieved with three components: the GPS location system, sensors and computers in bulldozers, and SITE CONTROLLER, a central computer system that maintains design data and directs operations. The first two components are widely available; I built SITE CONTROLLER to complete the triangle and describe it here. SITE CONTROLLER assists civil engineers in the design, estimation, and construction of earthworks, including hazardous waste site remediation. The core of SITE CONTROLLER is a site modelling system that represents existing and prospective terrain shapes, roads, hydrology, etc. Around this core are analysis, simulation, and vehicle control tools. Integrating these modules into one program enables civil engineers and contractors to use a single interface and database throughout the life of a project.
Resumo:
Traditionally, we've focussed on the question of how to make a system easy to code the first time, or perhaps on how to ease the system's continued evolution. But if we look at life cycle costs, then we must conclude that the important question is how to make a system easy to operate. To do this we need to make it easy for the operators to see what's going on and to then manipulate the system so that it does what it is supposed to. This is a radically different criterion for success. What makes a computer system visible and controllable? This is a difficult question, but it's clear that today's modern operating systems with nearly 50 million source lines of code are neither. Strikingly, the MIT Lisp Machine and its commercial successors provided almost the same functionality as today's mainstream sytsems, but with only 1 Million lines of code. This paper is a retrospective examination of the features of the Lisp Machine hardware and software system. Our key claim is that by building the Object Abstraction into the lowest tiers of the system, great synergy and clarity were obtained. It is our hope that this is a lesson that can impact tomorrow's designs. We also speculate on how the spirit of the Lisp Machine could be extended to include a comprehensive access control model and how new layers of abstraction could further enrich this model.