832 resultados para control en tiempo real


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se analizan los principales defectos de mecanización de la madera y los factores de que dependen. Así mismo se establecen las principales técnicas de evaluación de la rugosidad de la madera, y como la tendencia tecnológica busca desarrollar sistemas en tiempo real, de forma que de manera automática las piezas demasiado defectuosas sean rechazadas mientras que el resto sigan su proceso de acabado, aplicando la cantidad de producto adecuado a la calidad superficial individual de cada pieza o incluso de cada punto de la pieza.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El análisis de imágenes hiperespectrales permite obtener información con una gran resolución espectral: cientos de bandas repartidas desde el espectro infrarrojo hasta el ultravioleta. El uso de dichas imágenes está teniendo un gran impacto en el campo de la medicina y, en concreto, destaca su utilización en la detección de distintos tipos de cáncer. Dentro de este campo, uno de los principales problemas que existen actualmente es el análisis de dichas imágenes en tiempo real ya que, debido al gran volumen de datos que componen estas imágenes, la capacidad de cómputo requerida es muy elevada. Una de las principales líneas de investigación acerca de la reducción de dicho tiempo de procesado se basa en la idea de repartir su análisis en diversos núcleos trabajando en paralelo. En relación a esta línea de investigación, en el presente trabajo se desarrolla una librería para el lenguaje RVC – CAL – lenguaje que está especialmente pensado para aplicaciones multimedia y que permite realizar la paralelización de una manera intuitiva – donde se recogen las funciones necesarias para implementar el clasificador conocido como Support Vector Machine – SVM. Cabe mencionar que este trabajo complementa el realizado en [1] y [2] donde se desarrollaron las funciones necesarias para implementar una cadena de procesado que utiliza el método unmixing para procesar la imagen hiperespectral. En concreto, este trabajo se encuentra dividido en varias partes. La primera de ellas expone razonadamente los motivos que han llevado a comenzar este Trabajo de Investigación y los objetivos que se pretenden conseguir con él. Tras esto, se hace un amplio estudio del estado del arte actual y, en él, se explican tanto las imágenes hiperespectrales como sus métodos de procesado y, en concreto, se detallará el método que utiliza el clasificador SVM. Una vez expuesta la base teórica, nos centraremos en la explicación del método seguido para convertir una versión en Matlab del clasificador SVM optimizado para analizar imágenes hiperespectrales; un punto importante en este apartado es que se desarrolla la versión secuencial del algoritmo y se asientan las bases para una futura paralelización del clasificador. Tras explicar el método utilizado, se exponen los resultados obtenidos primero comparando ambas versiones y, posteriormente, analizando por etapas la versión adaptada al lenguaje RVC – CAL. Por último, se aportan una serie de conclusiones obtenidas tras analizar las dos versiones del clasificador SVM en cuanto a bondad de resultados y tiempos de procesado y se proponen una serie de posibles líneas de actuación futuras relacionadas con dichos resultados. ABSTRACT. Hyperspectral imaging allows us to collect high resolution spectral information: hundred of bands covering from infrared to ultraviolet spectrum. These images have had strong repercussions in the medical field; in particular, we must highlight its use in cancer detection. In this field, the main problem we have to deal with is the real time analysis, because these images have a great data volume and they require a high computational power. One of the main research lines that deals with this problem is related with the analysis of these images using several cores working at the same time. According to this investigation line, this document describes the development of a RVC – CAL library – this language has been widely used for working with multimedia applications and allows an optimized system parallelization –, which joins all the functions needed to implement the Support Vector Machine – SVM - classifier. This research complements the research conducted in [1] and [2] where the necessary functions to implement the unmixing method to analyze hyperspectral images were developed. The document is divided in several chapters. The first of them introduces the motivation of the Master Thesis and the main objectives to achieve. After that, we study the state of the art of some technologies related with this work, like hyperspectral images, their processing methods and, concretely, the SVM classifier. Once we have exposed the theoretical bases, we will explain the followed methodology to translate a Matlab version of the SVM classifier optimized to process an hyperspectral image to RVC – CAL language; one of the most important issues in this chapter is that a sequential implementation is developed and the bases of a future parallelization of the SVM classifier are set. At this point, we will expose the results obtained in the comparative between versions and then, the results of the different steps that compose the SVM in its RVC – CAL version. Finally, we will extract some conclusions related with algorithm behavior and time processing. In the same way, we propose some future research lines according to the results obtained in this document.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fernando Higueras en Ciudad Real

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente Trabajo de Fin de Grado se enmarca dentro de un sistema de control y desarrollo de sistemas inteligentes de transporte (ITS). Este Trabajo consta de varias líneas de desarrollo, que se engloban dentro de dicho marco y surgen de la necesidad de aumentar la seguridad, flujo, estructura y mantenimiento de las carreteras incorporando las tecnologías más recientes. En primer lugar, el presente Trabajo se centra en el desarrollo de un nuevo sistema de procesamiento de datos de tráfico en tiempo real que aprovecha las tecnologías de Big Data, Cloud Computing y Map-Reduce que han surgido estos últimos años. Para ello se realiza un estudio previo de los datos de tráfico vial que originan los vehículos que viajan por carreteras. Centrándose en el sistema empleado por la Dirección General de Tráfico de España y comparándolos con el de las Empresas basadas en servicios de localización (LBS). Se expone el modelo Hadoop utilizado así como el proceso Map-Reduce implementado en este sistema analizador. Por último los datos de salida son preparados y enviados a un módulo web básico que actúa como Sistema de Información Geográfica (GIS).---ABSTRACT---This Final Degree Project is part of a control system and development of intelligent transport systems (ITS). This work is part of a several lines of development, which are included within this framework and arise from the need to increase security, flow, structure and maintenance of roads incorporating the latest technologies. First, this paper focuses on the development of a new data processing system of real-time traffic that takes advantage of Big Data, Cloud Computing and Map-Reduce technologies emerged in our recent years. It is made a preliminary study of road traffic data originated by vehicles traveling by road. Focusing on the system used by the Dirección General de Tráfico of Spain and compared with that of the companies offering location based services (LBS). It is exposed the used Hadoop model and the Map-Reduce process implemented on this analyzer system. Finally, the output data is prepared and sent to a basic web module that acts as Geographic Information System (GIS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El mundo actual es una fuente ilimitada de información. El manejo y análisis de estas enormes cantidades de información es casi imposible, pero también es difícil poder capturar y relacionar diferentes tipos de datos entre sí y, a partir de este análisis, sacar conclusiones que puedan conllevar a la realización, o no, de un conjunto de acciones. Esto hace necesario la implementación de sistemas que faciliten el acceso, visualización y manejo de estos datos; con el objetivo de poder relacionarlos, analizarlos, y permitir al usuario que, de la manera más sencilla posible, pueda sacar conclusiones de estos. De esta necesidad de manejar, visualizar y relacionar datos nació la plataforma Wirecloud. Wirecloud ha sido desarrollado en el laboratorio Computer Networks & Web Technologies Lab (CoNWeT Lab) del grupo CETTICO, ubicado en la Escuela Técnica Superior de Ingenieros Informáticos de la Universidad Politécnica de Madrid. Wirecloud es una plataforma de código abierto que permite, utilizando las últimas tecnologías web, recoger la información que se quiere analizar de diferentes fuentes en tiempo real e, interconectando entre sí una serie de componentes y operadores, realizar una mezcla y procesado de esta información para después usarla y mostrarla de la manera más usable posible al usuario. Un ejemplo de uso real de la plataforma podría ser: utilizar la lista de repartidores de una empresa de envío urgente para conocer cuáles son sus posiciones en tiempo real sobre un mapa utilizando el posicionamiento GPS de sus dispositivos móviles, y poder asignarles el destino y la ruta más óptima; todo esto desde la misma pantalla. El proyecto Wirecloud Mobile corresponde a la versión móvil de la plataforma Wirecloud, cuyo objetivos principales pretenden compatibilizar Wirecloud con el mayor número de sistemas operativos móviles que actualmente hay en el mercado, permitiendo su uso en cualquier parte del mundo; y poder enriquecer los componentes mencionados en el párrafo anterior con las características y propiedades nativas de los dispositivos móviles actuales, como por ejemplo el posicionamiento GPS, el acelerómetro, la cámara, el micrófono, los altavoces o tecnologías de comunicación como el Bluetooth o el NFC.---ABSTRACT---The current world is a limitless source of information. Use and analysis of this huge amount of information is nearly impossible; but it is also difficult being able to capture and relate different kinds of data to each other and, from this analysis, draw conclusions that can lead to the fulfilment or not of a set of relevant actions. This requires the implementation of systems to facilitate the access, visualization and management of this data easier; with the purpose of being capable of relate, analyse, and allow the user to draw conclusions from them. And out of this need to manage, visualize and relate data, the Wirecloud platform was born. Wirecloud has been developed at the Computer Networks & Web Technologies Lab (CoNWeT Lab) of CETTICO group, located at Escuela Técnica Superior de Ingenieros Informáticos of Universidad Politécnica de Madrid. Wirecloud is an open-source platform that allows, using the latest web technologies, to collect the information from different sources in real time and interlinking a set of widgets and operators, make a mixture and processing of this information, so then use it and show it in the most usable way. An example of the actual use of the platform could be: using the list of deliverymen from an express delivery company in order to know, using GPS positioning from their mobile devices, which are their current locations in a map; and be able to assign them the destination and optimum route; all of this from the same display/screen. Wirecloud Mobile Project is the mobile version of the Wirecloud platform, whose main objectives aim to make Wirecloud compatible with the largest amount of mobile operative systems that are currently available, allowing its use everywhere; and enriching and improving the previously mentioned components with the native specifications and properties of the present mobile devices, such as GPS positioning, accelerometer, camera, microphone, built-in speakers, or communication technologies such as Bluetooth or NFC (Near Field Communications).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una red inalámbrica de sensores (Wireless Sensor Network, WSN) constituye un sistema de comunicación de datos flexible utilizado como alternativa a las redes cableadas o como extensión de éstas y está compuesta por elementos de cómputo, medición y comunicación, que permiten al administrador instrumentar, observar y reaccionar a eventos y fenómenos en un ambiente específico. Una de las aplicaciones de estas redes es su uso en sistemas de predicción y prevención de incendios en áreas naturales. Su implementación se basa en el despliegue de sensores inalámbricos, realizado en una zona de riesgo de incendio para que puedan recolectar información sobre parámetros ambientales como temperatura, humedad, luz o presión, entre otros. Desde una estación base (o nodo "sumidero"), se suministra la información de los sensores a un centro de monitorización y control de forma estructurada. En este centro la información recibida puede ser analizada, procesada y visualizada en tiempo real. Desde este centro de control se puede controlar también la red WSN modificando el comportamiento de los sensores según el nivel de riesgo de incendio detectado. Este proyecto se basa en el diseño, implementación y despliegue de una red inalámbrica de sensores en un entorno simulado para observar su comportamiento en diferentes situaciones y mostrar su eficacia ante un posible caso de incendio. La implementación de este sistema denominado Sistema de Estimación de Riesgo de Incendio Utilizando una WSN (SERIUW) , junto con el desarrollado, en paralelo, de otro proyecto denominado Sistema de Control y Visualización de Información sobre Riesgo de Incendio (SCVIRI) que implementa las funciones de los centros de monitorización y control, conforman un Sistema de Anticipación y Seguimiento de Fuegos (SASF). Se han realizado pruebas de funcionalidad y eficacia, incluidas en la presente memoria del sistema unitario de en conjunto (ambos proyectos), en un entorno controlado simulado. Este sistema es una solución para la lucha contra los incendios forestales ya que predice y previene, de forma temprana, posibles incendios en las áreas naturales bajo supervisión. Ante un evento de incendio declarado este sistema es un poderoso instrumento de apoyo permitiendo, por un lado, generar alertas automáticas (con localización y gravedad de fuegos detectados) y por el otro, hacer un seguimiento del incendio con mapas en tiempo real (con su consecuente apoyo para la protección e información con las brigadas de bomberos en las zonas activas). ABSTRACT. A wireless sensor network (WSN) is a flexible data communication system used as an alternative to wired networks or as an extension of them and consists of nodes that perform calculation, measurement and communication activities. This allows the administrator to observe and react to events and phenomena in a specific environment. One application of these networks is fire prediction and prevention in natural areas. Its implementation is based on a deployment of wireless sensors, in a fire risk area, capable of collecting information such as temperature, humidity, luminance and pressure. A base station (or "sink") sends the collected information to a monitoring and control center following a structured format. At this center, the information received can be analyzed, processed and displayed in real time with monitoring systems. From this control center the WSN can also be controlled by changing the sensors behavior according to the level of fire risk detection. This project is based on the design, implementation and deployment of a Wireless Sensor Network (WSN) in a simulated environment in order to observe its behavior in different situations and show its effectiveness against a possible fire environment. The implementation of this system called SERIUW, has been done in parallel with other system, called SCVIRI, which has been developed in another project that implements the functions of monitoring and control center. Together, these two systems, make up a general system of anticipation and monitoring of fires. Functionality and performance tests have been performed on the overall system, in a controlled and simulated environment. The results of these tests are included in this document. The global system is a solution to fight the forest fires because it makes it easier to predict and prevent, early, possible fires in natural areas under supervision. This sytem can be a powerful tool since, before a fire event is declared, it generates automatic alerts (including location and severity information) and allows the real-time motorization of fire evolution integrated with maps. This could be also very useful for the support protection and information of fire brigades in zones in which a fire is already active.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hay un ejemplar encuadernado con: Diversas Cartas que se han recogido de el venerable hermano Fray Francisco de el Niño Jesús... (XVIII/4275).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El transporte aéreo constituye un sector estratégico para el crecimiento económico de cualquier país. El sistema de gestión de tráfico aéreo ATM tiene como objetivo el movimiento seguro y eficiente de las aeronaves dentro del espacio aéreo y de los aeropuertos, siendo la seguridad, en la fase táctica, gestionada por el servicio de control de la circulación aérea. Mediante los procesos de control el tráfico aéreo es vigilado a través de sensores, regulado y guiado de forma organizada y segura. Es precisamente sobre la vigilancia donde se enfoca el contenido de la tesis, en el desarrollo de nuevos conceptos que proporcionen información de vigilancia de ‘bajo coste’ basados en las señales existentes proporcionadas por la infraestructura actual de radar secundario y por los sistemas de posicionamiento basados en satélite que utiliza la ADS-B. El conocimiento y acceso en tiempo real a las trayectorias de las aeronaves es un elemento de valor añadido no sólo para la provisión de los servicios de control de tránsito aéreo, sino para todos los actores del transporte aéreo o de la investigación, siendo uno de los elementos clave en el concepto operacional de los dos grandes proyectos tecnológicos, SESAR en Europa y NextGen en EE.UU.. En las últimas décadas el control de la circulación aérea en espacios aéreos de media y alta densidad de tráfico se ha basado en tecnologías complejas que requieren importantes infraestructuras como son el radar primario de vigilancia (PSR) y el radar secundario de vigilancia (SSR). La filosofía de los programas SESAR y NextGen siguiendo las directrices de la OACI es la de alejarse de las tecnologías basadas en tierra para evolucionar hacia nuevas tecnologías más dinámicas basadas en satélite como la ADS-B. Pero hasta que la implementación y operación de la ADS-B sea completa, existirá un período de transición que implica la coexistencia de aeronaves equipadas o no con ADS-B. El objetivo de la presente Tesis es determinar las metodologías y algoritmos más adecuados para poder hibridar las dos tecnologías descritas anteriormente, utilizando para ello un receptor de bajo coste con antena estática omnidireccional, que analice todas las señales presentes en el canal que comparten el SSR y ADS-B. Mediante esta hibridación se podrá obtener la posición de cualquier aeronave que transmita respuestas a interrogaciones SSR, en cualquiera de sus modos de trabajo, o directamente mensajes de posición ADS-B. Para desarrollar los algoritmos propuestos, además del hardware correspondiente, se han utilizado las aplicaciones LabVIEW para funciones de adquisición de datos reales, y el software MATLAB® para el desarrollo de algoritmos y análisis de datos. La validación de resultados se ha realizado mediante los propios mensajes de posición ADS-B y a través de las trazas radar proporcionadas por la entidad pública empresarial ENAIRE. La técnica desarrollada es autónoma, y no ha requerido de ninguna otra entrada que no sea la recepción omnidireccional de las señales. Sin embargo para la validación de resultados se ha utilizado información pública de las ubicaciones de la red de estaciones SSR desplegadas sobre territorio español y portugués y trazas radar. Los resultados obtenidos demuestran, que con técnicas basadas en superficies de situación definidas por los tiempos de llegada de las respuestas, es posible determinar con una precisión aceptable la posición de las estaciones SSR y la posición de cualquier aeronave que responda mediante el Modo A a éstas. ABSTRACT Air transport is a strategic sector for the economic growth of any country. The air traffic management system (ATM) aims at the safe and efficient movement of aircraft while operating within the airspace and airports, where safety, in the tactical phase, is managed by the air traffic control services. Through the air traffic control processes, aircraft are monitored by sensors, regulated and guided in an organized and safe manner. It is precisely on surveillance where this thesis is focused, developing new concepts that provide a 'low cost' surveillance information based on existing signals provided by currently secondary radar infrastructure and satellite-based positioning systems used by ADS-B. Having a deeper knowledge and a real-time access to the trajectories of the aircraft, is an element of added value not only for the provision of air traffic control services, but also for all air transport or research actors. This is one of the key elements in the operational concept proposed by the two large scale existing technological projects, SESAR in Europe and NextGen in the US. In recent decades, air traffic control in medium and high traffic density areas has been based on complex technologies requiring major infrastructures, such as the primary surveillance radar (PSR) and secondary surveillance radar (SSR). The philosophy of SESAR and NextGen programs, both following the guidelines of ICAO, is to move away from land-based technologies and evolving into some new and more dynamic satellite-based technologies such as ADS-B. Nevertheless, until the ADS-B implementation and operation is fully achieved, there will be a transitional period where aircraft with and without ADS-B equipment will have to coexist. The main objective of this thesis is to determine those methodologies and algorithms which are considered more appropriate to hybridize those two technologies, by using a low cost omnidirectional receiver, which analyzes all signals on the SSR and ADS-B shared channel. Through this hybridization, it is possible to obtain the position of any aircraft answering the SSR interrogations, in any of its modes of operation, or through the emission of ADS-B messages. To develop the proposed algorithms, LabVIEW application has been used for real-time data acquisition, as well as MATLAB software for algorithm development and data analysis, together with the corresponding hardware. The validation of results was performed using the ADS-B position messages and radar tracks provided by the Public Corporate Entity ENAIRE The developed technique is autonomous, and it does not require any other input other than the omnidirectional signal reception. However, for the validation of results, not only radar records have been used, but also public information regarding the position of SSR stations spread throughout the Spanish and Portuguese territory. The results show that using techniques based in the definition of positioning surfaces defined by the responses’ times of arrival, it is possible to determine with an acceptable level of accuracy both the position of the SSR stations as well as the position of any aircraft which transmits Mode A responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La diabetes mellitus es un trastorno en la metabolización de los carbohidratos, caracterizado por la nula o insuficiente segregación de insulina (hormona producida por el páncreas), como resultado del mal funcionamiento de la parte endocrina del páncreas, o de una creciente resistencia del organismo a esta hormona. Esto implica, que tras el proceso digestivo, los alimentos que ingerimos se transforman en otros compuestos químicos más pequeños mediante los tejidos exocrinos. La ausencia o poca efectividad de esta hormona polipéptida, no permite metabolizar los carbohidratos ingeridos provocando dos consecuencias: Aumento de la concentración de glucosa en sangre, ya que las células no pueden metabolizarla; consumo de ácidos grasos mediante el hígado, liberando cuerpos cetónicos para aportar la energía a las células. Esta situación expone al enfermo crónico, a una concentración de glucosa en sangre muy elevada, denominado hiperglucemia, la cual puede producir a medio o largo múltiples problemas médicos: oftalmológicos, renales, cardiovasculares, cerebrovasculares, neurológicos… La diabetes representa un gran problema de salud pública y es la enfermedad más común en los países desarrollados por varios factores como la obesidad, la vida sedentaria, que facilitan la aparición de esta enfermedad. Mediante el presente proyecto trabajaremos con los datos de experimentación clínica de pacientes con diabetes de tipo 1, enfermedad autoinmune en la que son destruidas las células beta del páncreas (productoras de insulina) resultando necesaria la administración de insulina exógena. Dicho esto, el paciente con diabetes tipo 1 deberá seguir un tratamiento con insulina administrada por la vía subcutánea, adaptado a sus necesidades metabólicas y a sus hábitos de vida. Para abordar esta situación de regulación del control metabólico del enfermo, mediante una terapia de insulina, no serviremos del proyecto “Páncreas Endocrino Artificial” (PEA), el cual consta de una bomba de infusión de insulina, un sensor continuo de glucosa, y un algoritmo de control en lazo cerrado. El objetivo principal del PEA es aportar al paciente precisión, eficacia y seguridad en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. El PEA se instala mediante vía subcutánea, por lo que, el retardo introducido por la acción de la insulina, el retardo de la medida de glucosa, así como los errores introducidos por los sensores continuos de glucosa cuando, se descalibran dificultando el empleo de un algoritmo de control. Llegados a este punto debemos modelar la glucosa del paciente mediante sistemas predictivos. Un modelo, es todo aquel elemento que nos permita predecir el comportamiento de un sistema mediante la introducción de variables de entrada. De este modo lo que conseguimos, es una predicción de los estados futuros en los que se puede encontrar la glucosa del paciente, sirviéndonos de variables de entrada de insulina, ingesta y glucosa ya conocidas, por ser las sucedidas con anterioridad en el tiempo. Cuando empleamos el predictor de glucosa, utilizando parámetros obtenidos en tiempo real, el controlador es capaz de indicar el nivel futuro de la glucosa para la toma de decisones del controlador CL. Los predictores que se están empleando actualmente en el PEA no están funcionando correctamente por la cantidad de información y variables que debe de manejar. Data Mining, también referenciado como Descubrimiento del Conocimiento en Bases de Datos (Knowledge Discovery in Databases o KDD), ha sido definida como el proceso de extracción no trivial de información implícita, previamente desconocida y potencialmente útil. Todo ello, sirviéndonos las siguientes fases del proceso de extracción del conocimiento: selección de datos, pre-procesado, transformación, minería de datos, interpretación de los resultados, evaluación y obtención del conocimiento. Con todo este proceso buscamos generar un único modelo insulina glucosa que se ajuste de forma individual a cada paciente y sea capaz, al mismo tiempo, de predecir los estados futuros glucosa con cálculos en tiempo real, a través de unos parámetros introducidos. Este trabajo busca extraer la información contenida en una base de datos de pacientes diabéticos tipo 1 obtenidos a partir de la experimentación clínica. Para ello emplearemos técnicas de Data Mining. Para la consecución del objetivo implícito a este proyecto hemos procedido a implementar una interfaz gráfica que nos guía a través del proceso del KDD (con información gráfica y estadística) de cada punto del proceso. En lo que respecta a la parte de la minería de datos, nos hemos servido de la denominada herramienta de WEKA, en la que a través de Java controlamos todas sus funciones, para implementarlas por medio del programa creado. Otorgando finalmente, una mayor potencialidad al proyecto con la posibilidad de implementar el servicio de los dispositivos Android por la potencial capacidad de portar el código. Mediante estos dispositivos y lo expuesto en el proyecto se podrían implementar o incluso crear nuevas aplicaciones novedosas y muy útiles para este campo. Como conclusión del proyecto, y tras un exhaustivo análisis de los resultados obtenidos, podemos apreciar como logramos obtener el modelo insulina-glucosa de cada paciente. ABSTRACT. The diabetes mellitus is a metabolic disorder, characterized by the low or none insulin production (a hormone produced by the pancreas), as a result of the malfunctioning of the endocrine pancreas part or by an increasing resistance of the organism to this hormone. This implies that, after the digestive process, the food we consume is transformed into smaller chemical compounds, through the exocrine tissues. The absence or limited effectiveness of this polypeptide hormone, does not allow to metabolize the ingested carbohydrates provoking two consequences: Increase of the glucose concentration in blood, as the cells are unable to metabolize it; fatty acid intake through the liver, releasing ketone bodies to provide energy to the cells. This situation exposes the chronic patient to high blood glucose levels, named hyperglycemia, which may cause in the medium or long term multiple medical problems: ophthalmological, renal, cardiovascular, cerebrum-vascular, neurological … The diabetes represents a great public health problem and is the most common disease in the developed countries, by several factors such as the obesity or sedentary life, which facilitate the appearance of this disease. Through this project we will work with clinical experimentation data of patients with diabetes of type 1, autoimmune disease in which beta cells of the pancreas (producers of insulin) are destroyed resulting necessary the exogenous insulin administration. That said, the patient with diabetes type 1 will have to follow a treatment with insulin, administered by the subcutaneous route, adapted to his metabolic needs and to his life habits. To deal with this situation of metabolic control regulation of the patient, through an insulin therapy, we shall be using the “Endocrine Artificial Pancreas " (PEA), which consists of a bomb of insulin infusion, a constant glucose sensor, and a control algorithm in closed bow. The principal aim of the PEA is providing the patient precision, efficiency and safety regarding the normalization of the glycemic control and hypoglycemia risk reduction". The PEA establishes through subcutaneous route, consequently, the delay introduced by the insulin action, the delay of the glucose measure, as well as the mistakes introduced by the constant glucose sensors when, decalibrate, impede the employment of an algorithm of control. At this stage we must shape the patient glucose levels through predictive systems. A model is all that element or set of elements which will allow us to predict the behavior of a system by introducing input variables. Thus what we obtain, is a prediction of the future stages in which it is possible to find the patient glucose level, being served of input insulin, ingestion and glucose variables already known, for being the ones happened previously in the time. When we use the glucose predictor, using obtained real time parameters, the controller is capable of indicating the future level of the glucose for the decision capture CL controller. The predictors that are being used nowadays in the PEA are not working correctly for the amount of information and variables that it need to handle. Data Mining, also indexed as Knowledge Discovery in Databases or KDD, has been defined as the not trivial extraction process of implicit information, previously unknown and potentially useful. All this, using the following phases of the knowledge extraction process: selection of information, pre- processing, transformation, data mining, results interpretation, evaluation and knowledge acquisition. With all this process we seek to generate the unique insulin glucose model that adjusts individually and in a personalized way for each patient form and being capable, at the same time, of predicting the future conditions with real time calculations, across few input parameters. This project of end of grade seeks to extract the information contained in a database of type 1 diabetics patients, obtained from clinical experimentation. For it, we will use technologies of Data Mining. For the attainment of the aim implicit to this project we have proceeded to implement a graphical interface that will guide us across the process of the KDD (with graphical and statistical information) of every point of the process. Regarding the data mining part, we have been served by a tool called WEKA's tool called, in which across Java, we control all of its functions to implement them by means of the created program. Finally granting a higher potential to the project with the possibility of implementing the service for Android devices, porting the code. Through these devices and what has been exposed in the project they might help or even create new and very useful applications for this field. As a conclusion of the project, and after an exhaustive analysis of the obtained results, we can show how we achieve to obtain the insulin–glucose model for each patient.